-
1
-
-
84959878631
-
Wellposedness of mean field games with common noise under a weak monotonicity condition
-
S. Ahuja, Wellposedness of mean field games with common noise under a weak monotonicity condition, SIAM J. Control Optim., 54 (2016), pp. 30-48.
-
(2016)
SIAM J. Control Optim.
, vol.54
, pp. 30-48
-
-
Ahuja, S.1
-
2
-
-
33748882071
-
Gradient flows: In metric spaces and in the space of probability measures
-
ETH zürich, Birkhäuser Verlag, Basel
-
L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH zürich, Birkhäuser Verlag, Basel, 2005.
-
(2005)
Lectures Math
-
-
Ambrosio, L.1
Gigli, N.2
Savaré, G.3
-
3
-
-
79958262462
-
A maximum principle for SDEs of mean-field type
-
D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Appl. Math. Optim., 63 (2010), pp. 341-356.
-
(2010)
Appl. Math. Optim.
, vol.63
, pp. 341-356
-
-
Andersson, D.1
Djehiche, B.2
-
4
-
-
79954472184
-
Fundamentals of stochastic filtering
-
Springer, New York
-
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Stoch. Model. Appl. Probab., 60, Springer, New York, 2009.
-
(2009)
Stoch. Model. Appl. Probab.
, vol.60
-
-
Bain, A.1
Crisan, D.2
-
5
-
-
85039799809
-
Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics
-
to appear
-
E. Bayraktar, A. Cosso, and H. Pham, Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics, Trans. Amer. Math. Soc. to appear, https://arxiv.org/abs/1606.08204, 2016.
-
Trans. Amer. Math. Soc.
-
-
Bayraktar, E.1
Cosso, A.2
Pham, H.3
-
6
-
-
84929045034
-
The Master equation in mean-field theory
-
A. Bensoussan, J. Frehse, and P. Yam, The Master equation in mean-field theory, J. Math. Pures Appl., 103 (2015), pp. 1441-1474.
-
(2015)
J. Math. Pures Appl.
, vol.103
, pp. 1441-1474
-
-
Bensoussan, A.1
Frehse, J.2
Yam, P.3
-
8
-
-
80052971337
-
A general maximum principle for SDEs of mean-field type
-
R. Buckdahn, B. Djehiche, and J. Li, A general maximum principle for SDEs of mean-field type, Appl. Math. Optim., 64 (2011), pp. 197-216.
-
(2011)
Appl. Math. Optim.
, vol.64
, pp. 197-216
-
-
Buckdahn, R.1
Djehiche, B.2
Li, J.3
-
9
-
-
85018948114
-
A mean-field stochastic control problem with partial observations
-
to appear
-
R. Buckdahn, J. Li, and J. Ma, A mean-field stochastic control problem with partial observations, Ann. Appl Probab., to appear.
-
Ann. Appl Probab.
-
-
Buckdahn, R.1
Li, J.2
Ma, J.3
-
10
-
-
85018965746
-
Mean-field stochastic Differential equations and associated PDEs
-
to appear
-
R. Buckdahn, J. Li, S. Peng, and C. Rainer, Mean-field stochastic Differential equations and associated PDEs, Ann. Probab., to appear, https://arxiv.org/abs/1407.1215, 2014.
-
(2014)
Ann. Probab.
-
-
Buckdahn, R.1
Li, J.2
Peng, S.3
Rainer, C.4
-
12
-
-
85072069003
-
-
arXiv:1509.02505
-
P. Cardaliaguet, F. Delarue, J. M. Lasry, and P. L. Lions, The Master Equation and the Convergence Problem in Mean Field Games, arXiv:1509.02505, 2015.
-
(2015)
The Master Equation and the Convergence Problem in Mean Field Games
-
-
Cardaliaguet, P.1
Delarue, F.2
Lasry, J.M.3
Lions, P.L.4
-
13
-
-
84947717362
-
Forward-backward stochastic Differential equations and controlled McKean Vlasov dynamics
-
R. Carmona and F. Delarue, Forward-backward stochastic Differential equations and controlled McKean Vlasov dynamics, Ann. Probab., 43 (2015), pp. 2647-2700.
-
(2015)
Ann. Probab.
, vol.43
, pp. 2647-2700
-
-
Carmona, R.1
Delarue, F.2
-
14
-
-
84919448149
-
The master equation for large population equilibriums
-
in Stochastic Analysis and Applications 2014, D. Crisan et al., eds. , Springer, New York
-
R. Carmona and F. Delarue, The Master equation for large population equilibriums, in Stochastic Analysis and Applications 2014, D. Crisan et al., eds., Springer Proc. Math. Statist. 100, Springer, New York, 2014.
-
(2014)
Springer Proc. Math. Statist.
, vol.100
-
-
Carmona, R.1
Delarue, F.2
-
15
-
-
84876129326
-
Control of McKean-Vlasov dynamics versus mean field games
-
R. Carmona, F. Delarue, and A. Lachapelle, Control of McKean-Vlasov dynamics versus mean field games, Math. Financ. Econ., 7 (2013), pp. 131-166.
-
(2013)
Math. Financ. Econ.
, vol.7
, pp. 131-166
-
-
Carmona, R.1
Delarue, F.2
Lachapelle, A.3
-
16
-
-
85018996101
-
Mean field games with common noise
-
R. Carmona, F. Delarue, and D. Lacker Mean field games with common noise, Ann. Probab., 44 (2016), pp. 3740-3803.
-
(2016)
Ann. Probab.
, vol.44
, pp. 3740-3803
-
-
Carmona, R.1
Delarue, F.2
Lacker, D.3
-
17
-
-
84930019381
-
Mean field games and systemic risk
-
R. Carmona, J. P. Fouque, and L. Sun, Mean field games and systemic risk, Commun. Math. Sci., 13 (2015), pp. 911-933.
-
(2015)
Commun. Math. Sci.
, vol.13
, pp. 911-933
-
-
Carmona, R.1
Fouque, J.P.2
Sun, L.3
-
18
-
-
84979084054
-
A Probabilistic approach to mean field games with major and minor players
-
R. Carmona and X. Zhu, A Probabilistic approach to mean field games with major and minor players, Ann. Appl. Probab., 26 (2016), pp. 1535-1580.
-
(2016)
Ann. Appl. Probab.
, vol.26
, pp. 1535-1580
-
-
Carmona, R.1
Zhu, X.2
-
20
-
-
84964844775
-
A pseudo-Markov property for controlled diffusion processes
-
J. Claisse, D. Talay, and X. Tan, A pseudo-Markov property for controlled diffusion processes, SIAM J. Control Optim., 54 (2016), pp. 1017-1029.
-
(2016)
SIAM J. Control Optim.
, vol.54
, pp. 1017-1029
-
-
Claisse, J.1
Talay, D.2
Tan, X.3
-
24
-
-
62949185876
-
A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in Infinite dimensions
-
J. Feng and M. Katsoulakis, A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in Infinite dimensions, Arch. Ration. Mech. Anal., 192 (2009), pp. 275-310.
-
(2009)
Arch. Ration. Mech. Anal.
, vol.192
, pp. 275-310
-
-
Feng, J.1
Katsoulakis, M.2
-
25
-
-
84936768219
-
Randomized and backward SDE representation for optimal control of non-Markovian SDEs
-
M. Fuhrman and H. Pham, Randomized and backward SDE representation for optimal control of non-Markovian SDEs, Ann. Appl. Probab, 25 (2015), pp. 2134-2167.
-
(2015)
Ann. Appl. Probab
, vol.25
, pp. 2134-2167
-
-
Fuhrman, M.1
Pham, H.2
-
26
-
-
77049105922
-
Hamilton-Jacobi equations in the Wasserstein space
-
W. Gangbo, T. Nguyen, and A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space, Methods Appl Anal., 15 (2008), pp. 155-184.
-
(2008)
Methods Appl Anal.
, vol.15
, pp. 155-184
-
-
Gangbo, W.1
Nguyen, T.2
Tudorascu, A.3
-
27
-
-
85018958657
-
Existence of a solution to an equation arising from mean field games
-
to appear
-
W. Gangbo and A. Swiech, Existence of a solution to an equation arising from mean field games, J. Differential Equations, to appear.
-
J. Differential Equations
-
-
Gangbo, W.1
Swiech, A.2
-
28
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
M. Huang, P. Caines, and R. Malhamé, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), pp. 221-252.
-
(2006)
Commun. Inf. Syst.
, vol.6
, pp. 221-252
-
-
Huang, M.1
Caines, P.2
Malhamé, R.3
-
29
-
-
0004275483
-
Controlled Diffusion Processes
-
Springer, New York
-
N. Krylov, Controlled Diffusion Processes, Appl. Math., 14, Springer, New York, 1980.
-
(1980)
Appl. Math., 14
-
-
Krylov, N.1
-
30
-
-
0000273833
-
Particle representations for a class of nonlinear SPDEs
-
T. Kurtz and J. Xiong, Particle representations for a class of nonlinear SPDEs, Stochastic Process Appl., 83 (1999), pp. 103-126.
-
(1999)
Stochastic Process Appl.
, vol.83
, pp. 103-126
-
-
Kurtz, T.1
Xiong, J.2
-
32
-
-
85037625453
-
Dynamic programming for mean-field type control
-
M. Laurière and O. Pironneau, Dynamic programming for mean-field type control, C. R. Math., 352 (2014), pp. 707-713.
-
(2014)
C. R. Math.
, vol.352
, pp. 707-713
-
-
Laurière, M.1
Pironneau, O.2
-
33
-
-
34250087346
-
Viscosity solutions of fully nonlinear second-order equations and optimal control in Infinite dimension. Part I: The case of bounded stochastic evolutions
-
P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal control in Infinite dimension. Part I: The case of bounded stochastic evolutions, Acta Math., 161 (1988), pp. 243-278.
-
(1988)
Acta Math.
, vol.161
, pp. 243-278
-
-
Lions, P.L.1
-
34
-
-
0002043438
-
Viscosity solutions of fully nonlinear second-order equations and optimal control in Infinite dimension. Part III: Uniqueness of viscosity solutions for general second-order equations
-
P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal control in Infinite dimension. Part III: Uniqueness of viscosity solutions for general second-order equations, J. Funct. Anal., 86 (1989), pp. 1-18.
-
(1989)
J. Funct. Anal.
, vol.86
, pp. 1-18
-
-
Lions, P.L.1
-
39
-
-
33845799781
-
Dynamic programming for stochastic target problems and geometric flows
-
M. Soner and N. Touzi, Dynamic programming for stochastic target problems and geometric flows, J. Eur. Math. Soc., 4 (2002), pp. 201-236.
-
(2002)
J. Eur. Math. Soc.
, vol.4
, pp. 201-236
-
-
Soner, M.1
Touzi, N.2
-
40
-
-
2442557820
-
Topics in optimal transportation
-
AMS, Providence, RI
-
C. Villani, Topics in Optimal Transportation, Grad. Stud. Math., AMS, Providence, RI, 2003.
-
(2003)
Grad. Stud. Math.
-
-
Villani, C.1
-
41
-
-
0002582488
-
Survey of measurable selection theorems: An update
-
Springer-Verlag, Berlin
-
D. Wagner, Survey of measurable selection theorems: An update, Lecture Notes in Math. 794, Springer-Verlag, Berlin, 1980.
-
(1980)
Lecture Notes in Math.
, vol.794
-
-
Wagner, D.1
-
42
-
-
0001042840
-
On a matrix Riccati equation of stochastic control
-
W. Wonham, On a matrix Riccati equation of stochastic control, SIAM J. Control Optim., 6 (1968), pp. 681-697.
-
(1968)
SIAM J. Control Optim.
, vol.6
, pp. 681-697
-
-
Wonham, W.1
-
43
-
-
84885675349
-
A linear-quadratic optimal control problem for mean-field stochastic Differential equations
-
J. Yong, A linear-quadratic optimal control problem for mean-field stochastic Differential equations, SIAM J. Control Optim.., 51 (2013), pp. 2809-2838.
-
(2013)
SIAM J. Control Optim..
, vol.51
, pp. 2809-2838
-
-
Yong, J.1
|