-
1
-
-
31744443874
-
-
2nd ed. Birkhäuser, Basel
-
AMBROSIO, L., GIGLI, N. and SAVARÉ, G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Birkhäuser, Basel.
-
(2008)
Gradient Flows in Metric Spaces and in the Space of Probability Measures
-
-
Ambrosio, L.1
Gigli, N.2
Savaré, G.3
-
2
-
-
79958262462
-
A maximum principle for SDEs of mean-field type
-
ANDERSSON, D. and DJEHICHE, B. (2011). A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63 341-356.
-
(2011)
Appl. Math. Optim.
, vol.63
, pp. 341-356
-
-
Andersson, D.1
Djehiche, B.2
-
3
-
-
84876190746
-
Linear quadratic mean field games
-
Technical report
-
BENSOUSSAN, A., SUNG, K.C. J., YAM, S.C. P. and YUNG, S.P. (2011). Linear quadratic mean field games. Technical report.
-
(2011)
-
-
Bensoussan, A.1
Sung, K.C.J.2
Yam, S.C.P.3
Yung, S.P.4
-
4
-
-
80052971337
-
A general stochastic maximum principle for SDEs of mean-field type
-
BUCKDAHN, R., DJEHICHE, B. and LI, J. (2011). A general stochastic maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64 197-216.
-
(2011)
Appl. Math. Optim.
, vol.64
, pp. 197-216
-
-
Buckdahn, R.1
Djehiche, B.2
Li, J.3
-
5
-
-
69249229620
-
Mean-field backward stochastic differential equations: A limit approach
-
BUCKDAHN, R., DJEHICHE, B., LI, J. and PENG, S. (2009). Mean-field backward stochastic differential equations: A limit approach. Ann. Probab. 37 1524-1565.
-
(2009)
Ann. Probab.
, vol.37
, pp. 1524-1565
-
-
Buckdahn, R.1
Djehiche, B.2
Li, J.3
Peng, S.4
-
6
-
-
85068762191
-
Notes on mean field games
-
Notes from P. L. Lions' lectures at the Collège de France. Available at
-
CARDALIAGUET, P. (2012). Notes on mean field games. Notes from P. L. Lions' lectures at the Collège de France. Available at https://www.ceremade.dauphine.fr/~cardalia/MFG100629.pdf.
-
(2012)
-
-
Cardaliaguet, P.1
-
7
-
-
84919448149
-
-
(B. Hambly, D. Crisan, T. Zariphopoulou and M. Reizakis, eds.). Springer, Cham
-
CARMONA, R. and DELARUE, F. (2014). The master equation for large population equilibriums. In Stochastic Analysis and Applications 2014 (B. Hambly, D. Crisan, T. Zariphopoulou and M. Reizakis, eds.) 77-128. Springer, Cham.
-
(2014)
The master equation for large population equilibriums. Stochastic Analysis and Applications 2014
, pp. 77-128
-
-
Carmona, R.1
Delarue, F.2
-
8
-
-
84881285990
-
Mean field forward-backward stochastic differential equations
-
CARMONA, R. and DELARUE, F. (2013). Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18 1-15.
-
(2013)
Electron. Commun. Probab.
, vol.18
, pp. 1-15
-
-
Carmona, R.1
Delarue, F.2
-
9
-
-
84881309217
-
Probabilistic analysis of mean-field games
-
CARMONA, R. and DELARUE, F. (2013). Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 2705-2734.
-
(2013)
SIAM J. Control Optim.
, vol.51
, pp. 2705-2734
-
-
Carmona, R.1
Delarue, F.2
-
10
-
-
84876129326
-
Control of McKean-Vlasov dynamics versus mean field games
-
CARMONA, R., DELARUE, F. and LACHAPELLE, A. (2013). Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ. 7 131-166.
-
(2013)
Math. Financ. Econ.
, vol.7
, pp. 131-166
-
-
Carmona, R.1
Delarue, F.2
Lachapelle, A.3
-
11
-
-
0036233502
-
On the existence and uniqueness of solutions to FBSDEs in a nondegenerate case
-
DELARUE, F. (2002). On the existence and uniqueness of solutions to FBSDEs in a nondegenerate case. Stochastic Process. Appl. 99 209-286.
-
(2002)
Stochastic Process. Appl.
, vol.99
, pp. 209-286
-
-
Delarue, F.1
-
12
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
HUANG, M., MALHAMÉ, R.P. and CAINES, P.E. (2006). Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221-251.
-
(2006)
Commun. Inf. Syst.
, vol.6
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
17
-
-
84883546190
-
Théorie des jeux à champs moyen et applications
-
Technical report
-
LIONS, P.L. (2007/2008). Théorie des jeux à champs moyen et applications. Technical report.
-
(2007)
-
-
Lions, P.L.1
-
18
-
-
0010914615
-
A class of Markov processes associated with nonlinear parabolic equations
-
MCKEAN, H.P. JR. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 1907-1911.
-
(1966)
Proc. Natl. Acad. Sci. USA.
, vol.56
, pp. 1907-1911
-
-
Mckean, H.P.1
-
19
-
-
0003002903
-
Propagation of chaos for a class of non-linear parabolic equations
-
Air Force Office Sci. Res., Arlington, VA. (Lecture Series in Differential Equations, Session 7, Catholic Uni., 1967)
-
MCKEAN, H.P. JR. (1967). Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) 41-57. Air Force Office Sci. Res., Arlington, VA.
-
(1967)
In Stochastic Differential Equations
, pp. 41-57
-
-
Mckean, H.P.1
-
20
-
-
0025262967
-
Adapted solution of a backward stochastic differential equation
-
PARDOUX, É. and PENG, S.G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55-61.
-
(1990)
Systems Control Lett
, vol.14
, pp. 55-61
-
-
Pardoux, É.1
Peng, S.G.2
-
21
-
-
0032634560
-
Fully coupled forward-backward stochastic differential equations and applications to optimal control
-
PENG, S. and WU, Z. (1999). Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 825-843.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 825-843
-
-
Peng, S.1
Wu, Z.2
-
25
-
-
84906303118
-
Probabilistic interpretation for a system of quasilinear parabolic partial differential equation combined with algebra equations
-
WU, Z. and YU, Z. (2014). Probabilistic interpretation for a system of quasilinear parabolic partial differential equation combined with algebra equations. Stochastic Process. Appl. 124 3921-3947.
-
(2014)
Stochastic Process. Appl.
, vol.124
, pp. 3921-3947
-
-
Wu, Z.1
Yu, Z.2
-
26
-
-
0345774722
-
Stochastic Controls: Hamiltonian Systems and HJB Equations
-
Springer, New York
-
YONG, J. and ZHOU, X.Y. (1999). Stochastic Controls: Hamiltonian Systems and HJB Equations. Applications of Mathematics (New York) 43. Springer, New York.
-
(1999)
Applications of Mathematics (New York)
, pp. 43
-
-
Yong, J.1
Zhou, X.Y.2
|