메뉴 건너뛰기




Volumn , Issue , 2016, Pages 4599-4607

Riemannian SVRG: Fast stochastic optimization on riemannian manifolds

Author keywords

[No Author keywords available]

Indexed keywords

VECTOR SPACES;

EID: 85018894780     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (245)

References (39)
  • 4
    • 84899001337 scopus 로고    scopus 로고
    • Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)
    • F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n). In Advances in Neural Information Processing Systems, pages 773-781, 2013.
    • (2013) Advances in Neural Information Processing Systems , pp. 773-781
    • Bach, F.1    Moulines, E.2
  • 6
    • 84872106502 scopus 로고    scopus 로고
    • Computing the karcher mean of symmetric positive definite matrices
    • D. A. Bini and B. Iannazzo. Computing the karcher mean of symmetric positive definite matrices. Linear Algebra and its Applications, 438(4):1700-1710, 2013.
    • (2013) Linear Algebra and its Applications , vol.438 , Issue.4 , pp. 1700-1710
    • Bini, D.A.1    Iannazzo, B.2
  • 7
    • 84883004604 scopus 로고    scopus 로고
    • Stochastic gradient descent on riemannian manifolds
    • S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. Automatic Control, IEEE Transactions on, 58(9):2217-2229, 2013.
    • (2013) Automatic Control, IEEE Transactions on , vol.58 , Issue.9 , pp. 2217-2229
    • Bonnabel, S.1
  • 9
    • 84928816305 scopus 로고    scopus 로고
    • Approximate joint diagonalization and geometric mean of symmetric positive definite matrices
    • M. Congedo, B. Afsari, A. Barachant, and M. Moakher. Approximate joint diagonalization and geometric mean of symmetric positive definite matrices. PloS one, 10(4):e0121423, 2015.
    • (2015) PloS One , vol.10 , Issue.4 , pp. e0121423
    • Congedo, M.1    Afsari, B.2    Barachant, A.3    Moakher, M.4
  • 10
    • 84937908747 scopus 로고    scopus 로고
    • Saga: A fast incremental gradient method with support for non-strongly convex composite objectives
    • A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In NIPS, pages 1646-1654, 2014.
    • (2014) NIPS , pp. 1646-1654
    • Defazio, A.1    Bach, F.2    Lacoste-Julien, S.3
  • 13
    • 84892854517 scopus 로고    scopus 로고
    • Stochastic first-and zeroth-order methods for nonconvex stochastic programming
    • S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.4 , pp. 2341-2368
    • Ghadimi, S.1    Lan, G.2
  • 15
    • 84965169813 scopus 로고    scopus 로고
    • Matrix manifold optimization for Gaussian mixtures
    • R. Hosseini and S. Sra. Matrix manifold optimization for Gaussian mixtures. In NIPS, 2015.
    • (2015) NIPS
    • Hosseini, R.1    Sra, S.2
  • 16
  • 18
    • 84898963415 scopus 로고    scopus 로고
    • Accelerating stochastic gradient descent using predictive variance reduction
    • R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems, pages 315-323, 2013.
    • (2013) Advances in Neural Information Processing Systems , pp. 315-323
    • Johnson, R.1    Zhang, T.2
  • 21
    • 3042571516 scopus 로고    scopus 로고
    • Optimal linear representations of images for object recognition
    • X. Liu, A. Srivastava, and K. Gallivan. Optimal linear representations of images for object recognition. IEEE TPAMI, 26(5):662-666, 2004.
    • (2004) IEEE TPAMI , vol.26 , Issue.5 , pp. 662-666
    • Liu, X.1    Srivastava, A.2    Gallivan, K.3
  • 23
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • E. Oja. Principal components, minor components, and linear neural networks. Neural Networks, 5(6): 927-935, 1992.
    • (1992) Neural Networks , vol.5 , Issue.6 , pp. 927-935
    • Oja, E.1
  • 24
    • 0003439973 scopus 로고    scopus 로고
    • Springer Science & Business Media
    • P. Petersen. Riemannian geometry, Volume 171. Springer Science & Business Media, 2006.
    • (2006) Riemannian Geometry , vol.171
    • Petersen, P.1
  • 29
    • 84969523896 scopus 로고    scopus 로고
    • A stochastic PCA and SVD algorithm with an exponential convergence rate
    • O. Shamir. A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate. In International Conference on Machine Learning (ICML-15), pages 144-152, 2015.
    • (2015) International Conference on Machine Learning (ICML-15) , pp. 144-152
    • Shamir, O.1
  • 30
    • 84899004893 scopus 로고    scopus 로고
    • Geometric optimisation on positive definite matrices for elliptically contoured distributions
    • S. Sra and R. Hosseini. Geometric optimisation on positive definite matrices for elliptically contoured distributions. In Advances in Neural Information Processing Systems, pages 2562-2570, 2013.
    • (2013) Advances in Neural Information Processing Systems , pp. 2562-2570
    • Sra, S.1    Hosseini, R.2
  • 34
    • 84880713057 scopus 로고    scopus 로고
    • Low-rank matrix completion by riemannian optimization
    • B. Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization, 23(2):1214-1236, 2013.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.2 , pp. 1214-1236
    • Vandereycken, B.1
  • 35
    • 84870562566 scopus 로고    scopus 로고
    • Geodesic convexity and covariance estimation
    • A. Wiesel. Geodesic convexity and covariance estimation. IEEE Transactions on Signal Processing, 60(12):6182-6189, 2012.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , Issue.12 , pp. 6182-6189
    • Wiesel, A.1
  • 36
    • 84919793228 scopus 로고    scopus 로고
    • A proximal stochastic gradient method with progressive variance reduction
    • L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.
    • (2014) SIAM Journal on Optimization , vol.24 , Issue.4 , pp. 2057-2075
    • Xiao, L.1    Zhang, T.2
  • 37
    • 84978525638 scopus 로고    scopus 로고
    • A riemannian limited-memory bfgs algorithm for computing the matrix geometric mean
    • X. Yuan, W. Huang, P.-A. Absil, and K. Gallivan. A riemannian limited-memory bfgs algorithm for computing the matrix geometric mean. Procedia Computer Science, 80:2147-2157, 2016.
    • (2016) Procedia Computer Science , vol.80 , pp. 2147-2157
    • Yuan, X.1    Huang, W.2    Absil, P.-A.3    Gallivan, K.4
  • 39
    • 84881111308 scopus 로고    scopus 로고
    • Multivariate generalized Gaussian distribution: Convexity and graphical models
    • T. Zhang, A. Wiesel, and M. S. Greco. Multivariate generalized Gaussian distribution: Convexity and graphical models. Signal Processing, IEEE Transactions on, 61(16):4141-4148, 2013.
    • (2013) Signal Processing, IEEE Transactions on , vol.61 , Issue.16 , pp. 4141-4148
    • Zhang, T.1    Wiesel, A.2    Greco, M.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.