-
4
-
-
84899001337
-
Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)
-
F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n). In Advances in Neural Information Processing Systems, pages 773-781, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 773-781
-
-
Bach, F.1
Moulines, E.2
-
6
-
-
84872106502
-
Computing the karcher mean of symmetric positive definite matrices
-
D. A. Bini and B. Iannazzo. Computing the karcher mean of symmetric positive definite matrices. Linear Algebra and its Applications, 438(4):1700-1710, 2013.
-
(2013)
Linear Algebra and its Applications
, vol.438
, Issue.4
, pp. 1700-1710
-
-
Bini, D.A.1
Iannazzo, B.2
-
7
-
-
84883004604
-
Stochastic gradient descent on riemannian manifolds
-
S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. Automatic Control, IEEE Transactions on, 58(9):2217-2229, 2013.
-
(2013)
Automatic Control, IEEE Transactions on
, vol.58
, Issue.9
, pp. 2217-2229
-
-
Bonnabel, S.1
-
9
-
-
84928816305
-
Approximate joint diagonalization and geometric mean of symmetric positive definite matrices
-
M. Congedo, B. Afsari, A. Barachant, and M. Moakher. Approximate joint diagonalization and geometric mean of symmetric positive definite matrices. PloS one, 10(4):e0121423, 2015.
-
(2015)
PloS One
, vol.10
, Issue.4
, pp. e0121423
-
-
Congedo, M.1
Afsari, B.2
Barachant, A.3
Moakher, M.4
-
10
-
-
84937908747
-
Saga: A fast incremental gradient method with support for non-strongly convex composite objectives
-
A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In NIPS, pages 1646-1654, 2014.
-
(2014)
NIPS
, pp. 1646-1654
-
-
Defazio, A.1
Bach, F.2
Lacoste-Julien, S.3
-
11
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303-353, 1998.
-
(1998)
SIAM Journal on Matrix Analysis and Applications
, vol.20
, Issue.2
, pp. 303-353
-
-
Edelman, A.1
Arias, T.A.2
Smith, S.T.3
-
13
-
-
84892854517
-
Stochastic first-and zeroth-order methods for nonconvex stochastic programming
-
S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.
-
(2013)
SIAM Journal on Optimization
, vol.23
, Issue.4
, pp. 2341-2368
-
-
Ghadimi, S.1
Lan, G.2
-
15
-
-
84965169813
-
Matrix manifold optimization for Gaussian mixtures
-
R. Hosseini and S. Sra. Matrix manifold optimization for Gaussian mixtures. In NIPS, 2015.
-
(2015)
NIPS
-
-
Hosseini, R.1
Sra, S.2
-
17
-
-
84997609778
-
-
arXiv:1510.08896
-
C. Jin, S. M. Kakade, C. Musco, P. Netrapalli, and A. Sidford. Robust shift-and-invert preconditioning: Faster and more sample efficient algorithms for eigenvector computation. arXiv:1510.08896, 2015.
-
(2015)
Robust Shift-and-invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation
-
-
Jin, C.1
Kakade, S.M.2
Musco, C.3
Netrapalli, P.4
Sidford, A.5
-
18
-
-
84898963415
-
Accelerating stochastic gradient descent using predictive variance reduction
-
R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems, pages 315-323, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 315-323
-
-
Johnson, R.1
Zhang, T.2
-
21
-
-
3042571516
-
Optimal linear representations of images for object recognition
-
X. Liu, A. Srivastava, and K. Gallivan. Optimal linear representations of images for object recognition. IEEE TPAMI, 26(5):662-666, 2004.
-
(2004)
IEEE TPAMI
, vol.26
, Issue.5
, pp. 662-666
-
-
Liu, X.1
Srivastava, A.2
Gallivan, K.3
-
23
-
-
0026954958
-
Principal components, minor components, and linear neural networks
-
E. Oja. Principal components, minor components, and linear neural networks. Neural Networks, 5(6): 927-935, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.6
, pp. 927-935
-
-
Oja, E.1
-
24
-
-
0003439973
-
-
Springer Science & Business Media
-
P. Petersen. Riemannian geometry, Volume 171. Springer Science & Business Media, 2006.
-
(2006)
Riemannian Geometry
, vol.171
-
-
Petersen, P.1
-
25
-
-
84988681617
-
-
arXiv:1603.06160
-
S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. Smola. Stochastic variance reduction for nonconvex optimization. arXiv:1603.06160, 2016.
-
(2016)
Stochastic Variance Reduction for Nonconvex Optimization
-
-
Reddi, S.J.1
Hefny, A.2
Sra, S.3
Póczós, B.4
Smola, A.5
-
29
-
-
84969523896
-
A stochastic PCA and SVD algorithm with an exponential convergence rate
-
O. Shamir. A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate. In International Conference on Machine Learning (ICML-15), pages 144-152, 2015.
-
(2015)
International Conference on Machine Learning (ICML-15)
, pp. 144-152
-
-
Shamir, O.1
-
30
-
-
84899004893
-
Geometric optimisation on positive definite matrices for elliptically contoured distributions
-
S. Sra and R. Hosseini. Geometric optimisation on positive definite matrices for elliptically contoured distributions. In Advances in Neural Information Processing Systems, pages 2562-2570, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2562-2570
-
-
Sra, S.1
Hosseini, R.2
-
32
-
-
84919820364
-
Riemannian pursuit for big matrix recovery
-
M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. J. Pan. Riemannian pursuit for big matrix recovery. In International Conference on Machine Learning (ICML-14), pages 1539-1547, 2014.
-
(2014)
International Conference on Machine Learning (ICML-14)
, pp. 1539-1547
-
-
Tan, M.1
Tsang, I.W.2
Wang, L.3
Vandereycken, B.4
Pan, S.J.5
-
34
-
-
84880713057
-
Low-rank matrix completion by riemannian optimization
-
B. Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization, 23(2):1214-1236, 2013.
-
(2013)
SIAM Journal on Optimization
, vol.23
, Issue.2
, pp. 1214-1236
-
-
Vandereycken, B.1
-
35
-
-
84870562566
-
Geodesic convexity and covariance estimation
-
A. Wiesel. Geodesic convexity and covariance estimation. IEEE Transactions on Signal Processing, 60(12):6182-6189, 2012.
-
(2012)
IEEE Transactions on Signal Processing
, vol.60
, Issue.12
, pp. 6182-6189
-
-
Wiesel, A.1
-
36
-
-
84919793228
-
A proximal stochastic gradient method with progressive variance reduction
-
L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.
-
(2014)
SIAM Journal on Optimization
, vol.24
, Issue.4
, pp. 2057-2075
-
-
Xiao, L.1
Zhang, T.2
-
37
-
-
84978525638
-
A riemannian limited-memory bfgs algorithm for computing the matrix geometric mean
-
X. Yuan, W. Huang, P.-A. Absil, and K. Gallivan. A riemannian limited-memory bfgs algorithm for computing the matrix geometric mean. Procedia Computer Science, 80:2147-2157, 2016.
-
(2016)
Procedia Computer Science
, vol.80
, pp. 2147-2157
-
-
Yuan, X.1
Huang, W.2
Absil, P.-A.3
Gallivan, K.4
-
39
-
-
84881111308
-
Multivariate generalized Gaussian distribution: Convexity and graphical models
-
T. Zhang, A. Wiesel, and M. S. Greco. Multivariate generalized Gaussian distribution: Convexity and graphical models. Signal Processing, IEEE Transactions on, 61(16):4141-4148, 2013.
-
(2013)
Signal Processing, IEEE Transactions on
, vol.61
, Issue.16
, pp. 4141-4148
-
-
Zhang, T.1
Wiesel, A.2
Greco, M.S.3
|