메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1000-1008

Gaussian process bandit optimisation with multi-fidelity evaluations

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC);

EID: 85018876167     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (190)

References (33)
  • 1
    • 84868292661 scopus 로고    scopus 로고
    • Oracle inequalities for computationally budgeted model selection
    • Alekh Agarwal, John C Duchi, Peter L Bartlett, and Clement Levrard. Oracle inequalities for computationally budgeted model selection. In COLT, 2011.
    • (2011) COLT
    • Agarwal, A.1    Duchi, J.C.2    Bartlett, P.L.3    Levrard, C.4
  • 2
    • 0041966002 scopus 로고    scopus 로고
    • Using confidence bounds for exploitation-exploration trade-offs
    • Peter Auer. Using Confidence Bounds for Exploitation-exploration Trade-offs. J. Mach. Learn. Res., 2003.
    • (2003) J. Mach. Learn. Res.
    • Auer, P.1
  • 3
    • 84869826137 scopus 로고    scopus 로고
    • A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical RL
    • E. Brochu, V. M. Cora, and N. de Freitas. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical RL. CoRR, 2010.
    • (2010) CoRR
    • Brochu, E.1    Cora, V.M.2    De Freitas, N.3
  • 5
    • 84929191082 scopus 로고    scopus 로고
    • Reinforcement learning with multi-fidelity simulators
    • Mark Cutler, Thomas J. Walsh, and Jonathan P. How. Reinforcement Learning with Multi-Fidelity Simulators. In ICRA, 2014.
    • (2014) ICRA
    • Cutler, M.1    Walsh, T.J.2    How, J.P.3
  • 6
    • 84898072179 scopus 로고    scopus 로고
    • Stochastic linear optimization under bandit feedback
    • V. Dani, T. P. P. Hayes, and S. M Kakade. Stochastic Linear Optimization under Bandit Feedback. In COLT, 2008.
    • (2008) COLT
    • Dani, V.1    Hayes, T.P.P.2    Kakade, S.M.3
  • 7
    • 35348925480 scopus 로고    scopus 로고
    • Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes
    • T. M. Davis et al. Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes. Astrophysical Journal, 2007.
    • (2007) Astrophysical Journal
    • Davis, T.M.1
  • 8
    • 84898993776 scopus 로고    scopus 로고
    • High-dimensional Gaussian process bandits
    • J Djolonga, A Krause, and V Cevher. High-Dimensional Gaussian Process Bandits. In NIPS, 2013.
    • (2013) NIPS
    • Djolonga, J.1    Krause, A.2    Cevher, V.3
  • 10
    • 33847339319 scopus 로고    scopus 로고
    • Posterior consistency of Gaussian process prior for nonparametric binary regression"
    • Subhashis Ghosal and Anindya Roy. Posterior consistency of Gaussian process prior for nonparametric binary regression". Annals of Statistics, 2006.
    • (2006) Annals of Statistics
    • Ghosal, S.1    Roy, A.2
  • 13
  • 14
    • 84997831578 scopus 로고    scopus 로고
    • Additive approximations in high dimensional nonparametric regression via the SALSA
    • Kirthevasan Kandasamy and Yaoliang Yu. Additive Approximations in High Dimensional Nonparametric Regression via the SALSA. In ICML, 2016.
    • (2016) ICML
    • Kandasamy, K.1    Yu, Y.2
  • 21
    • 0012499686 scopus 로고
    • Application of Bayesian approach to numerical methods of global and stochastic optimization
    • Jonas Mockus. Application of Bayesian approach to numerical methods of global and stochastic optimization. Journal of Global Optimization, 1994.
    • (1994) Journal of Global Optimization
    • Mockus, J.1
  • 22
    • 85162504694 scopus 로고    scopus 로고
    • Optimistic optimization of deterministic functions without the knowledge of its smoothness
    • R. Munos. Optimistic Optimization of Deterministic Functions without the Knowledge of its Smoothness. In NIPS, 2011.
    • (2011) NIPS
    • Munos, R.1
  • 26
    • 85007162574 scopus 로고    scopus 로고
    • Selecting near-optimal learners via incremental data allocation
    • A Sabharwal, H Samulowitz, and G Tesauro. Selecting near-optimal learners via incremental data allocation. In AAAI, 2015.
    • (2015) AAAI
    • Sabharwal, A.1    Samulowitz, H.2    Tesauro, G.3
  • 27
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of Machine learning algorithms
    • J. Snoek, H. Larochelle, and R. P Adams. Practical Bayesian Optimization of Machine Learning Algorithms. In NIPS, 2012.
    • (2012) NIPS
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 28
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. In ICML, 2010.
    • (2010) ICML
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 29
    • 84898939805 scopus 로고    scopus 로고
    • Multi-task Bayesian optimization
    • Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In NIPS, 2013.
    • (2013) NIPS
    • Swersky, K.1    Snoek, J.2    Adams, R.P.3
  • 30
    • 0001395850 scopus 로고
    • On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
    • W. R. Thompson. On the Likelihood that one Unknown Probability Exceeds Another in View of the Evidence of Two Samples. Biometrika, 1933.
    • (1933) Biometrika
    • Thompson, W.R.1
  • 32
    • 84879353375 scopus 로고    scopus 로고
    • Sequential design and analysis of high-accuracy and low-accuracy computer codes
    • Shifeng Xiong, Peter Z. G. Qian, and C. F. Jeff Wu. Sequential design and analysis of high-accuracy and low-accuracy computer codes. Technometrics, 2013.
    • (2013) Technometrics
    • Xiong, S.1    Qian, P.Z.G.2    Jeff Wu, C.F.3
  • 33
    • 84965099489 scopus 로고    scopus 로고
    • Active learning from weak and strong labelers
    • C. Zhang and K. Chaudhuri. Active Learning from Weak and Strong Labelers. In NIPS, 2015.
    • (2015) NIPS
    • Zhang, C.1    Chaudhuri, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.