메뉴 건너뛰기




Volumn 9, Issue , 2017, Pages 195-204

Control of confounding in the analysis phase – an overview for clinicians

Author keywords

Adjustment; Confounding; Multivariable analysis; Observational studies; Propensity score; Stratification

Indexed keywords

ALCOHOL CONSUMPTION; ARTICLE; BLOOD PRESSURE; DISEASE SEVERITY; HEART INFARCTION; HEART RATE; HIGH DIMENSIONAL PROPENSITY SCORE; HUMAN; LIFESTYLE; OBSERVATIONAL STUDY; PHYSICAL ACTIVITY; POPULATION RESEARCH; PRACTICE GUIDELINE; PROPENSITY SCORE; RISK FACTOR; SELF REPORT; STANDARDIZATION;

EID: 85018481567     PISSN: None     EISSN: 11791349     Source Type: Journal    
DOI: 10.2147/CLEP.S129886     Document Type: Article
Times cited : (80)

References (8)
  • 1
    • 21344459222 scopus 로고    scopus 로고
    • Regression modelling and other methods to control confounding
    • McNamee R. Regression modelling and other methods to control confounding. Occup Environ Med. 2005;62(7):500–506.
    • (2005) Occup Environ Med , vol.62 , Issue.7 , pp. 500-506
    • McNamee, R.1
  • 2
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–1379.
    • (1996) J Clin Epidemiol , vol.49 , Issue.12 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.R.5
  • 3
    • 58849157241 scopus 로고    scopus 로고
    • Use of disease risk scores in pharmacoepidemiologic studies
    • Arbogast PG, Ray WA. Use of disease risk scores in pharmacoepidemiologic studies. Stat Methods Med Res. 2009;18(1):67–80.
    • (2009) Stat Methods Med Res , vol.18 , Issue.1 , pp. 67-80
    • Arbogast, P.G.1    Ray, W.A.2
  • 4
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda MS, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol. 2003;158(3):280–287.
    • (2003) Am J Epidemiol , vol.158 , Issue.3 , pp. 280-287
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 5
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity score methods for reducing the effects of confounding in observational studies
    • Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res. 2011;46(3):399–424.
    • (2011) Multivar Behav Res , vol.46 , Issue.3 , pp. 399-424
    • Austin, P.C.1
  • 6
    • 84860599298 scopus 로고    scopus 로고
    • Role of disease risk scores in comparative effectiveness research with emerging therapies
    • Glynn RJ, Gagne JJ, Schneeweiss S. Role of disease risk scores in comparative effectiveness research with emerging therapies. Pharmacoepidem Dr S. 2012;21:138–147.
    • (2012) Pharmacoepidem Dr S , vol.21 , pp. 138-147
    • Glynn, R.J.1    Gagne, J.J.2    Schneeweiss, S.3
  • 7
    • 84861837320 scopus 로고    scopus 로고
    • Propensity scores: From naive enthusiasm to intuitive understanding
    • Williamson E, Morley R, Lucas A, Carpenter J. Propensity scores: from naive enthusiasm to intuitive understanding. Stat Methods Med Res. 2012;21(3):273–293.
    • (2012) Stat Methods Med Res , vol.21 , Issue.3 , pp. 273-293
    • Williamson, E.1    Morley, R.2    Lucas, A.3    Carpenter, J.4
  • 8
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–560.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550-560
    • Robins, J.M.1    Hernan, M.A.2    Brumback, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.