-
1
-
-
0000173897
-
Fuzzy time series and its models
-
[1] Song, Q., Chissom, B.S., Fuzzy time series and its models. Fuzzy Sets Syst. 54 (1993), 269–277.
-
(1993)
Fuzzy Sets Syst.
, vol.54
, pp. 269-277
-
-
Song, Q.1
Chissom, B.S.2
-
2
-
-
34248666540
-
Fuzzy sets
-
[2] Zadeh, L.A., Fuzzy sets. Inf. Control 8 (1965), 338–353.
-
(1965)
Inf. Control
, vol.8
, pp. 338-353
-
-
Zadeh, L.A.1
-
3
-
-
38149146997
-
Forecasting enrollments with fuzzy time series – part II
-
[3] Song, Q., Chissom, B.S., Forecasting enrollments with fuzzy time series – part II. Fuzzy Sets Syst. 62 (1994), 1–8.
-
(1994)
Fuzzy Sets Syst.
, vol.62
, pp. 1-8
-
-
Song, Q.1
Chissom, B.S.2
-
4
-
-
38149147511
-
Forecasting enrollments with fuzzy time series – part I
-
[4] Song, Q., Chissom, B.S., Forecasting enrollments with fuzzy time series – part I. Fuzzy Sets Syst. 54 (1993), 1–10.
-
(1993)
Fuzzy Sets Syst.
, vol.54
, pp. 1-10
-
-
Song, Q.1
Chissom, B.S.2
-
5
-
-
0001073047
-
Forecasting enrollments based on fuzzy time-series
-
[5] Chen, S.M., Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996), 311–319.
-
(1996)
Fuzzy Sets Syst.
, vol.81
, pp. 311-319
-
-
Chen, S.M.1
-
6
-
-
0035502063
-
Effective length of intervals to improve forecasting in fuzzy time-series
-
[6] Huarng, K., Effective length of intervals to improve forecasting in fuzzy time-series. Fuzzy Sets Syst. 123 (2001), 387–394.
-
(2001)
Fuzzy Sets Syst.
, vol.123
, pp. 387-394
-
-
Huarng, K.1
-
7
-
-
33644994175
-
Ratio-based lengths of intervals to improve fuzyy time series forecasting
-
[7] Huarng, K., Yu, T.H.-K., Ratio-based lengths of intervals to improve fuzyy time series forecasting. IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 36 (2006), 328–340.
-
(2006)
IEEE Trans. Syst. Man Cybern. – Part B: Cybern.
, vol.36
, pp. 328-340
-
-
Huarng, K.1
Yu, T.H.-K.2
-
8
-
-
36148952573
-
Multi-attribute fuzzy time series method based on fuzzy clustering
-
[8] Cheng, C.-H., Cheng, G.-W., Wang, J.-W., Multi-attribute fuzzy time series method based on fuzzy clustering. Expert Syst. Appl. 34 (2008), 1235–1242.
-
(2008)
Expert Syst. Appl.
, vol.34
, pp. 1235-1242
-
-
Cheng, C.-H.1
Cheng, G.-W.2
Wang, J.-W.3
-
9
-
-
77950189383
-
Finding an optimal interval length in high order fuzzy time series
-
[9] Egrioglu, E., Aladag, C.H., Yolcu, U., Uslu, V.R., Basaran, M.A., Finding an optimal interval length in high order fuzzy time series. Expert Syst. Appl. 37 (2010), 5052–5055.
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 5052-5055
-
-
Egrioglu, E.1
Aladag, C.H.2
Yolcu, U.3
Uslu, V.R.4
Basaran, M.A.5
-
10
-
-
78651303153
-
A new approach based on the optimization of the length of intervals in fuzzy time series
-
[10] Egrioglu, E., Aladag, C.H., Basaran, M.A., Uslu, V.R., Yolcu, U., A new approach based on the optimization of the length of intervals in fuzzy time series. J. Intell. Fuzzy Syst. 22 (2011), 15–19.
-
(2011)
J. Intell. Fuzzy Syst.
, vol.22
, pp. 15-19
-
-
Egrioglu, E.1
Aladag, C.H.2
Basaran, M.A.3
Uslu, V.R.4
Yolcu, U.5
-
11
-
-
58549116080
-
A new approach for determining the length of intervals for fuzzy time series
-
[11] Yolcu, U., Egrioglu, E., Uslu, V.R., Basaran, M.A., Aladag, C.H., A new approach for determining the length of intervals for fuzzy time series. Appl. Soft Comput. 9 (2009), 647–651.
-
(2009)
Appl. Soft Comput.
, vol.9
, pp. 647-651
-
-
Yolcu, U.1
Egrioglu, E.2
Uslu, V.R.3
Basaran, M.A.4
Aladag, C.H.5
-
12
-
-
0036098015
-
Forecasting enrollments based on high order fuzzy time series
-
[12] Chen, S.M., Forecasting enrollments based on high order fuzzy time series. Cybern. Syst. 33 (2002), 1–16.
-
(2002)
Cybern. Syst.
, vol.33
, pp. 1-16
-
-
Chen, S.M.1
-
13
-
-
33644868985
-
The application of neural networks to forecast fuzzy time series
-
[13] Huarng, K., Yu, H.-K., The application of neural networks to forecast fuzzy time series. Phys. A 363 (2006), 481–491.
-
(2006)
Phys. A
, vol.363
, pp. 481-491
-
-
Huarng, K.1
Yu, H.-K.2
-
14
-
-
58349090456
-
Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations
-
[14] Aladag, C.H., Basaran, M.A., Egrioglu, E., Yolcu, U., Uslu, V.R., Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations. Expert Syst. Appl. 36 (2009), 4228–4231.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 4228-4231
-
-
Aladag, C.H.1
Basaran, M.A.2
Egrioglu, E.3
Yolcu, U.4
Uslu, V.R.5
-
15
-
-
67349187003
-
A new approach based on artificial neural networks for high order multivariate fuzzy time series
-
[15] Egrioglu, E., Aladag, C.H., Yolcu, U., Uslu, V.R., Basaran, M.A., A new approach based on artificial neural networks for high order multivariate fuzzy time series. Expert Syst. Appl. 36 (2009), 10589–10594.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 10589-10594
-
-
Egrioglu, E.1
Aladag, C.H.2
Yolcu, U.3
Uslu, V.R.4
Basaran, M.A.5
-
16
-
-
60249083330
-
A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model
-
[16] Egrioglu, E., Aladag, C.H., Yolcu, U., Basaran, M.A., Uslu, V.R., A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model. Expert Syst. Appl. 36 (2009), 7424–7434.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 7424-7434
-
-
Egrioglu, E.1
Aladag, C.H.2
Yolcu, U.3
Basaran, M.A.4
Uslu, V.R.5
-
17
-
-
79551652450
-
A new approach based on artificial neural networks for high order bivariate fuzzy time series
-
J. Mehnen Springer-Verlag Berlin Heidelberg
-
[17] Egrioglu, E., Uslu, V.R., Yolcu, U., Basaran, M.A., Aladag, C.H., et al. A new approach based on artificial neural networks for high order bivariate fuzzy time series. Mehnen, J., (eds.) Applications of Soft Computing, AISC 58, 2009, Springer-Verlag, Berlin Heidelberg, 265–273.
-
(2009)
Applications of Soft Computing, AISC 58
, pp. 265-273
-
-
Egrioglu, E.1
Uslu, V.R.2
Yolcu, U.3
Basaran, M.A.4
Aladag, C.H.5
-
18
-
-
71249088973
-
A neural network- based fuzzy time series model to improve forecasting
-
[18] Yu, T.H.-K., Huarng, K.-H., A neural network- based fuzzy time series model to improve forecasting. Expert Syst. Appl. 37 (2010), 3366–3372.
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 3366-3372
-
-
Yu, T.H.-K.1
Huarng, K.-H.2
-
19
-
-
84864746036
-
Time-series forecasting with a novel fuzzy time series approach: an example for İstanbul stock market
-
[19] Yolcu, U., Aladag, C.H., Egrioglu, E., Uslu, V.R., Time-series forecasting with a novel fuzzy time series approach: an example for İstanbul stock market. J. Stat. Comput. Simul. 83 (2013), 599–612.
-
(2013)
J. Stat. Comput. Simul.
, vol.83
, pp. 599-612
-
-
Yolcu, U.1
Aladag, C.H.2
Egrioglu, E.3
Uslu, V.R.4
-
20
-
-
77957661892
-
Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques
-
[20] Chen, S., Chang, Y., Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques. Inf. Sci. 180 (2010), 4772–4783.
-
(2010)
Inf. Sci.
, vol.180
, pp. 4772-4783
-
-
Chen, S.1
Chang, Y.2
-
21
-
-
79551645335
-
TAIEX forecasting based on fuzzy time series and fuzzy variation groups
-
[21] Chen, S., Chen, C., TAIEX forecasting based on fuzzy time series and fuzzy variation groups. IEEE Trans. Fuzzy Syst. 19 (2011), 1–12.
-
(2011)
IEEE Trans. Fuzzy Syst.
, vol.19
, pp. 1-12
-
-
Chen, S.1
Chen, C.2
-
22
-
-
84867840221
-
TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors
-
[22] Chen, S., Chu, H., Sheu, T., TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 42 (2012), 1485–1495.
-
(2012)
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
, vol.42
, pp. 1485-1495
-
-
Chen, S.1
Chu, H.2
Sheu, T.3
-
23
-
-
84926191810
-
A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression
-
[23] Cai, Q., Zhang, D., Zheng, W., Leung, S.C.H., A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression. Knowl.-Based Syst. 74 (2015), 61–68.
-
(2015)
Knowl.-Based Syst.
, vol.74
, pp. 61-68
-
-
Cai, Q.1
Zhang, D.2
Zheng, W.3
Leung, S.C.H.4
-
24
-
-
85027921885
-
Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships
-
[24] Chen, S.-M., Chen, S.-W., Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. Appl. Math. Modell. 45 (2015), 391–403.
-
(2015)
Appl. Math. Modell.
, vol.45
, pp. 391-403
-
-
Chen, S.-M.1
Chen, S.-W.2
-
25
-
-
84992111825
-
High order fuzzy time series forecasting method based on an intersection operation
-
[25] Yolcu, O.C., Yolcu, U., Egrioglu, E., Aladag, C.H., High order fuzzy time series forecasting method based on an intersection operation. Appl. Math. Modell. 40 (2016), 8750–8765.
-
(2016)
Appl. Math. Modell.
, vol.40
, pp. 8750-8765
-
-
Yolcu, O.C.1
Yolcu, U.2
Egrioglu, E.3
Aladag, C.H.4
-
26
-
-
84974536563
-
A novel forecasting method based on multi-order fuzzy time series and technical analysis
-
[26] Ye, F., Zhang, L., Zhang, D., Fujita, H., Gong, Z., A novel forecasting method based on multi-order fuzzy time series and technical analysis. Inf. Sci. 367–368 (2016), 41–57.
-
(2016)
Inf. Sci.
, vol.367-368
, pp. 41-57
-
-
Ye, F.1
Zhang, L.2
Zhang, D.3
Fujita, H.4
Gong, Z.5
-
27
-
-
85007000625
-
Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups, similarity measures and PSO techniques
-
[27] Chen, S.-M., Jian, W.-S., Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups, similarity measures and PSO techniques. Inf. Sci. 391 (2017), 65–69.
-
(2017)
Inf. Sci.
, vol.391
, pp. 65-69
-
-
Chen, S.-M.1
Jian, W.-S.2
-
28
-
-
0027601884
-
ANFIS: adaptive network based fuzzy inference systems
-
[28] Jang, J.S., ANFIS: adaptive network based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23 (1993), 665–685.
-
(1993)
IEEE Trans. Syst. Man Cybern.
, vol.23
, pp. 665-685
-
-
Jang, J.S.1
-
30
-
-
42549141543
-
An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature
-
[30] Mellit, A., Arab, A.H., Khorissi, N., Salhi, H., An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature. IEEE power engineering society general meeting, 2007.
-
(2007)
IEEE power engineering society general meeting
-
-
Mellit, A.1
Arab, A.H.2
Khorissi, N.3
Salhi, H.4
-
31
-
-
52949101717
-
Resolving the forecasting problems of overshoot and volatility clustering using ANFIS coupling nonlinear heteroscedasticity with quantum tuning
-
[31] Chang, B., Resolving the forecasting problems of overshoot and volatility clustering using ANFIS coupling nonlinear heteroscedasticity with quantum tuning. Fuzzy Set Syst. 159 (2008), 3183–3200.
-
(2008)
Fuzzy Set Syst.
, vol.159
, pp. 3183-3200
-
-
Chang, B.1
-
32
-
-
69249211259
-
Fusion ANFIS models based on multi-stock volatility causality for TAIEX forecasting
-
[32] Cheng, C., Wei, L., Chen, Y., Fusion ANFIS models based on multi-stock volatility causality for TAIEX forecasting. Neurocomputing 72 (2009), 3462–3468.
-
(2009)
Neurocomputing
, vol.72
, pp. 3462-3468
-
-
Cheng, C.1
Wei, L.2
Chen, Y.3
-
33
-
-
85018449010
-
A new adaptive network based fuzzy inference system for time series forecasting
-
[33] Egrioğlu, E., Aladag, C.H., Yolcu, U., Bas, E., A new adaptive network based fuzzy inference system for time series forecasting. Aloy J. Soft Comput. Appl. 2 (2014), 25–32.
-
(2014)
Aloy J. Soft Comput. Appl.
, vol.2
, pp. 25-32
-
-
Egrioğlu, E.1
Aladag, C.H.2
Yolcu, U.3
Bas, E.4
-
34
-
-
84979295867
-
A new hybrid method for time series forecasting: AR-ANFIS
-
[34] Sarıca, B., Egrioglu, E., ASıkgil, B., A new hybrid method for time series forecasting: AR-ANFIS. Neural Comput. Appl., 2016, 1–12, 10.1007/s00521-016-2475-5.
-
(2016)
Neural Comput. Appl.
, pp. 1-12
-
-
Sarıca, B.1
Egrioglu, E.2
ASıkgil, B.3
-
35
-
-
84875475621
-
A new hybrid approach for forecasting a seasonal fuzzy time series
-
[35] Uslu, V.R., Aladag, C.H., Yolcu, U., Egrioğlu, E., A new hybrid approach for forecasting a seasonal fuzzy time series. International Symposium Computing Science and Engineering Proceeding Book, 2010, 1152–1158.
-
(2010)
International Symposium Computing Science and Engineering Proceeding Book
, pp. 1152-1158
-
-
Uslu, V.R.1
Aladag, C.H.2
Yolcu, U.3
Egrioğlu, E.4
-
36
-
-
85018435109
-
A novel seasonal fuzzy time series method
-
C. Gokceoglu H.C. Aladag A. Akgun
-
[36] Alpaslan, F., Cagcag, O., Aladag, C.H., Yolcu U, U., Egrioglu, E., A novel seasonal fuzzy time series method. Gokceoglu, C., Aladag, H.C., Akgun, A., (eds.) FUZZYSS'11: The Second Internatıonal Fuzzy Systems Symposıum, Proceeding Book, 2011, 50–55.
-
(2011)
FUZZYSS'11: The Second Internatıonal Fuzzy Systems Symposıum, Proceeding Book
, pp. 50-55
-
-
Alpaslan, F.1
Cagcag, O.2
Aladag, C.H.3
Yolcu U, U.4
Egrioglu, E.5
-
37
-
-
84881426024
-
An ARMA type fuzzy time series forecasting method based on particle swarm optimization
-
(Article ID 935815)
-
[37] Egrioglu, E., Yolcu U, U., Aladag, C.H., Kocak, C., An ARMA type fuzzy time series forecasting method based on particle swarm optimization. Math. Probl. Eng., 2013, 2013 (Article ID 935815).
-
(2013)
Math. Probl. Eng.
, vol.2013
-
-
Egrioglu, E.1
Yolcu U, U.2
Aladag, C.H.3
Kocak, C.4
-
38
-
-
84886665028
-
First- Order ARMA type fuzzy time series method based on fuzzy logic relation tables
-
(Article ID 769125)
-
[38] Kocak, C., First- Order ARMA type fuzzy time series method based on fuzzy logic relation tables. Math. Probl. Eng., 2013, 2013 (Article ID 769125).
-
(2013)
Math. Probl. Eng.
, vol.2013
-
-
Kocak, C.1
-
39
-
-
85018418093
-
Recurrent Type fuzzy time series forecasting method based on artificial neural networks
-
[39] Kocak, C., Egrioglu, E., Yolcu, U., Recurrent Type fuzzy time series forecasting method based on artificial neural networks. Am. J. Oper. Syst. 5 (2015), 111–124.
-
(2015)
Am. J. Oper. Syst.
, vol.5
, pp. 111-124
-
-
Kocak, C.1
Egrioglu, E.2
Yolcu, U.3
-
40
-
-
84938124812
-
A new high order fuzzy ARMA time series forecasting method by using neural networks to define fuzzy relations
-
(Article ID 128097)
-
[40] Kocak, C., A new high order fuzzy ARMA time series forecasting method by using neural networks to define fuzzy relations. Math. Probl. Eng., 2015, 2015 (Article ID 128097).
-
(2015)
Math. Probl. Eng.
, vol.2015
-
-
Kocak, C.1
-
41
-
-
68249136965
-
Comparing predictive accuracy, journal of business and economic statistics
-
[41] Diebold, F.X., Mariano, R., Comparing predictive accuracy, journal of business and economic statistics. Math. Probl. Eng. 13 (1995), 253–265.
-
(1995)
Math. Probl. Eng.
, vol.13
, pp. 253-265
-
-
Diebold, F.X.1
Mariano, R.2
|