메뉴 건너뛰기




Volumn 58, Issue , 2017, Pages 92-103

ARMA(p,q) type high order fuzzy time series forecast method based on fuzzy logic relations

Author keywords

Fuzzy ARMA models; Fuzzy autoregressive moving avarage model; Fuzzy time series; Group relation table; High order fuzzy time series

Indexed keywords

COMPUTER CIRCUITS; ELECTRONIC TRADING; FINANCIAL MARKETS; FORECASTING; TIME SERIES;

EID: 85018451794     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2017.04.021     Document Type: Article
Times cited : (67)

References (41)
  • 1
    • 0000173897 scopus 로고
    • Fuzzy time series and its models
    • [1] Song, Q., Chissom, B.S., Fuzzy time series and its models. Fuzzy Sets Syst. 54 (1993), 269–277.
    • (1993) Fuzzy Sets Syst. , vol.54 , pp. 269-277
    • Song, Q.1    Chissom, B.S.2
  • 2
    • 34248666540 scopus 로고
    • Fuzzy sets
    • [2] Zadeh, L.A., Fuzzy sets. Inf. Control 8 (1965), 338–353.
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 3
    • 38149146997 scopus 로고
    • Forecasting enrollments with fuzzy time series – part II
    • [3] Song, Q., Chissom, B.S., Forecasting enrollments with fuzzy time series – part II. Fuzzy Sets Syst. 62 (1994), 1–8.
    • (1994) Fuzzy Sets Syst. , vol.62 , pp. 1-8
    • Song, Q.1    Chissom, B.S.2
  • 4
    • 38149147511 scopus 로고
    • Forecasting enrollments with fuzzy time series – part I
    • [4] Song, Q., Chissom, B.S., Forecasting enrollments with fuzzy time series – part I. Fuzzy Sets Syst. 54 (1993), 1–10.
    • (1993) Fuzzy Sets Syst. , vol.54 , pp. 1-10
    • Song, Q.1    Chissom, B.S.2
  • 5
    • 0001073047 scopus 로고    scopus 로고
    • Forecasting enrollments based on fuzzy time-series
    • [5] Chen, S.M., Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996), 311–319.
    • (1996) Fuzzy Sets Syst. , vol.81 , pp. 311-319
    • Chen, S.M.1
  • 6
    • 0035502063 scopus 로고    scopus 로고
    • Effective length of intervals to improve forecasting in fuzzy time-series
    • [6] Huarng, K., Effective length of intervals to improve forecasting in fuzzy time-series. Fuzzy Sets Syst. 123 (2001), 387–394.
    • (2001) Fuzzy Sets Syst. , vol.123 , pp. 387-394
    • Huarng, K.1
  • 7
    • 33644994175 scopus 로고    scopus 로고
    • Ratio-based lengths of intervals to improve fuzyy time series forecasting
    • [7] Huarng, K., Yu, T.H.-K., Ratio-based lengths of intervals to improve fuzyy time series forecasting. IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 36 (2006), 328–340.
    • (2006) IEEE Trans. Syst. Man Cybern. – Part B: Cybern. , vol.36 , pp. 328-340
    • Huarng, K.1    Yu, T.H.-K.2
  • 8
    • 36148952573 scopus 로고    scopus 로고
    • Multi-attribute fuzzy time series method based on fuzzy clustering
    • [8] Cheng, C.-H., Cheng, G.-W., Wang, J.-W., Multi-attribute fuzzy time series method based on fuzzy clustering. Expert Syst. Appl. 34 (2008), 1235–1242.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1235-1242
    • Cheng, C.-H.1    Cheng, G.-W.2    Wang, J.-W.3
  • 9
  • 10
    • 78651303153 scopus 로고    scopus 로고
    • A new approach based on the optimization of the length of intervals in fuzzy time series
    • [10] Egrioglu, E., Aladag, C.H., Basaran, M.A., Uslu, V.R., Yolcu, U., A new approach based on the optimization of the length of intervals in fuzzy time series. J. Intell. Fuzzy Syst. 22 (2011), 15–19.
    • (2011) J. Intell. Fuzzy Syst. , vol.22 , pp. 15-19
    • Egrioglu, E.1    Aladag, C.H.2    Basaran, M.A.3    Uslu, V.R.4    Yolcu, U.5
  • 11
    • 58549116080 scopus 로고    scopus 로고
    • A new approach for determining the length of intervals for fuzzy time series
    • [11] Yolcu, U., Egrioglu, E., Uslu, V.R., Basaran, M.A., Aladag, C.H., A new approach for determining the length of intervals for fuzzy time series. Appl. Soft Comput. 9 (2009), 647–651.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 647-651
    • Yolcu, U.1    Egrioglu, E.2    Uslu, V.R.3    Basaran, M.A.4    Aladag, C.H.5
  • 12
    • 0036098015 scopus 로고    scopus 로고
    • Forecasting enrollments based on high order fuzzy time series
    • [12] Chen, S.M., Forecasting enrollments based on high order fuzzy time series. Cybern. Syst. 33 (2002), 1–16.
    • (2002) Cybern. Syst. , vol.33 , pp. 1-16
    • Chen, S.M.1
  • 13
    • 33644868985 scopus 로고    scopus 로고
    • The application of neural networks to forecast fuzzy time series
    • [13] Huarng, K., Yu, H.-K., The application of neural networks to forecast fuzzy time series. Phys. A 363 (2006), 481–491.
    • (2006) Phys. A , vol.363 , pp. 481-491
    • Huarng, K.1    Yu, H.-K.2
  • 14
    • 58349090456 scopus 로고    scopus 로고
    • Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations
    • [14] Aladag, C.H., Basaran, M.A., Egrioglu, E., Yolcu, U., Uslu, V.R., Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations. Expert Syst. Appl. 36 (2009), 4228–4231.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4228-4231
    • Aladag, C.H.1    Basaran, M.A.2    Egrioglu, E.3    Yolcu, U.4    Uslu, V.R.5
  • 15
    • 67349187003 scopus 로고    scopus 로고
    • A new approach based on artificial neural networks for high order multivariate fuzzy time series
    • [15] Egrioglu, E., Aladag, C.H., Yolcu, U., Uslu, V.R., Basaran, M.A., A new approach based on artificial neural networks for high order multivariate fuzzy time series. Expert Syst. Appl. 36 (2009), 10589–10594.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10589-10594
    • Egrioglu, E.1    Aladag, C.H.2    Yolcu, U.3    Uslu, V.R.4    Basaran, M.A.5
  • 16
    • 60249083330 scopus 로고    scopus 로고
    • A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model
    • [16] Egrioglu, E., Aladag, C.H., Yolcu, U., Basaran, M.A., Uslu, V.R., A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model. Expert Syst. Appl. 36 (2009), 7424–7434.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7424-7434
    • Egrioglu, E.1    Aladag, C.H.2    Yolcu, U.3    Basaran, M.A.4    Uslu, V.R.5
  • 17
    • 79551652450 scopus 로고    scopus 로고
    • A new approach based on artificial neural networks for high order bivariate fuzzy time series
    • J. Mehnen Springer-Verlag Berlin Heidelberg
    • [17] Egrioglu, E., Uslu, V.R., Yolcu, U., Basaran, M.A., Aladag, C.H., et al. A new approach based on artificial neural networks for high order bivariate fuzzy time series. Mehnen, J., (eds.) Applications of Soft Computing, AISC 58, 2009, Springer-Verlag, Berlin Heidelberg, 265–273.
    • (2009) Applications of Soft Computing, AISC 58 , pp. 265-273
    • Egrioglu, E.1    Uslu, V.R.2    Yolcu, U.3    Basaran, M.A.4    Aladag, C.H.5
  • 18
    • 71249088973 scopus 로고    scopus 로고
    • A neural network- based fuzzy time series model to improve forecasting
    • [18] Yu, T.H.-K., Huarng, K.-H., A neural network- based fuzzy time series model to improve forecasting. Expert Syst. Appl. 37 (2010), 3366–3372.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3366-3372
    • Yu, T.H.-K.1    Huarng, K.-H.2
  • 19
    • 84864746036 scopus 로고    scopus 로고
    • Time-series forecasting with a novel fuzzy time series approach: an example for İstanbul stock market
    • [19] Yolcu, U., Aladag, C.H., Egrioglu, E., Uslu, V.R., Time-series forecasting with a novel fuzzy time series approach: an example for İstanbul stock market. J. Stat. Comput. Simul. 83 (2013), 599–612.
    • (2013) J. Stat. Comput. Simul. , vol.83 , pp. 599-612
    • Yolcu, U.1    Aladag, C.H.2    Egrioglu, E.3    Uslu, V.R.4
  • 20
    • 77957661892 scopus 로고    scopus 로고
    • Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques
    • [20] Chen, S., Chang, Y., Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques. Inf. Sci. 180 (2010), 4772–4783.
    • (2010) Inf. Sci. , vol.180 , pp. 4772-4783
    • Chen, S.1    Chang, Y.2
  • 21
    • 79551645335 scopus 로고    scopus 로고
    • TAIEX forecasting based on fuzzy time series and fuzzy variation groups
    • [21] Chen, S., Chen, C., TAIEX forecasting based on fuzzy time series and fuzzy variation groups. IEEE Trans. Fuzzy Syst. 19 (2011), 1–12.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , pp. 1-12
    • Chen, S.1    Chen, C.2
  • 22
    • 84867840221 scopus 로고    scopus 로고
    • TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors
    • [22] Chen, S., Chu, H., Sheu, T., TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 42 (2012), 1485–1495.
    • (2012) IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. , vol.42 , pp. 1485-1495
    • Chen, S.1    Chu, H.2    Sheu, T.3
  • 23
    • 84926191810 scopus 로고    scopus 로고
    • A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression
    • [23] Cai, Q., Zhang, D., Zheng, W., Leung, S.C.H., A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression. Knowl.-Based Syst. 74 (2015), 61–68.
    • (2015) Knowl.-Based Syst. , vol.74 , pp. 61-68
    • Cai, Q.1    Zhang, D.2    Zheng, W.3    Leung, S.C.H.4
  • 24
    • 85027921885 scopus 로고    scopus 로고
    • Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships
    • [24] Chen, S.-M., Chen, S.-W., Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. Appl. Math. Modell. 45 (2015), 391–403.
    • (2015) Appl. Math. Modell. , vol.45 , pp. 391-403
    • Chen, S.-M.1    Chen, S.-W.2
  • 25
    • 84992111825 scopus 로고    scopus 로고
    • High order fuzzy time series forecasting method based on an intersection operation
    • [25] Yolcu, O.C., Yolcu, U., Egrioglu, E., Aladag, C.H., High order fuzzy time series forecasting method based on an intersection operation. Appl. Math. Modell. 40 (2016), 8750–8765.
    • (2016) Appl. Math. Modell. , vol.40 , pp. 8750-8765
    • Yolcu, O.C.1    Yolcu, U.2    Egrioglu, E.3    Aladag, C.H.4
  • 26
    • 84974536563 scopus 로고    scopus 로고
    • A novel forecasting method based on multi-order fuzzy time series and technical analysis
    • [26] Ye, F., Zhang, L., Zhang, D., Fujita, H., Gong, Z., A novel forecasting method based on multi-order fuzzy time series and technical analysis. Inf. Sci. 367–368 (2016), 41–57.
    • (2016) Inf. Sci. , vol.367-368 , pp. 41-57
    • Ye, F.1    Zhang, L.2    Zhang, D.3    Fujita, H.4    Gong, Z.5
  • 27
    • 85007000625 scopus 로고    scopus 로고
    • Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups, similarity measures and PSO techniques
    • [27] Chen, S.-M., Jian, W.-S., Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups, similarity measures and PSO techniques. Inf. Sci. 391 (2017), 65–69.
    • (2017) Inf. Sci. , vol.391 , pp. 65-69
    • Chen, S.-M.1    Jian, W.-S.2
  • 28
    • 0027601884 scopus 로고
    • ANFIS: adaptive network based fuzzy inference systems
    • [28] Jang, J.S., ANFIS: adaptive network based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23 (1993), 665–685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.1
  • 31
    • 52949101717 scopus 로고    scopus 로고
    • Resolving the forecasting problems of overshoot and volatility clustering using ANFIS coupling nonlinear heteroscedasticity with quantum tuning
    • [31] Chang, B., Resolving the forecasting problems of overshoot and volatility clustering using ANFIS coupling nonlinear heteroscedasticity with quantum tuning. Fuzzy Set Syst. 159 (2008), 3183–3200.
    • (2008) Fuzzy Set Syst. , vol.159 , pp. 3183-3200
    • Chang, B.1
  • 32
    • 69249211259 scopus 로고    scopus 로고
    • Fusion ANFIS models based on multi-stock volatility causality for TAIEX forecasting
    • [32] Cheng, C., Wei, L., Chen, Y., Fusion ANFIS models based on multi-stock volatility causality for TAIEX forecasting. Neurocomputing 72 (2009), 3462–3468.
    • (2009) Neurocomputing , vol.72 , pp. 3462-3468
    • Cheng, C.1    Wei, L.2    Chen, Y.3
  • 33
    • 85018449010 scopus 로고    scopus 로고
    • A new adaptive network based fuzzy inference system for time series forecasting
    • [33] Egrioğlu, E., Aladag, C.H., Yolcu, U., Bas, E., A new adaptive network based fuzzy inference system for time series forecasting. Aloy J. Soft Comput. Appl. 2 (2014), 25–32.
    • (2014) Aloy J. Soft Comput. Appl. , vol.2 , pp. 25-32
    • Egrioğlu, E.1    Aladag, C.H.2    Yolcu, U.3    Bas, E.4
  • 34
    • 84979295867 scopus 로고    scopus 로고
    • A new hybrid method for time series forecasting: AR-ANFIS
    • [34] Sarıca, B., Egrioglu, E., ASıkgil, B., A new hybrid method for time series forecasting: AR-ANFIS. Neural Comput. Appl., 2016, 1–12, 10.1007/s00521-016-2475-5.
    • (2016) Neural Comput. Appl. , pp. 1-12
    • Sarıca, B.1    Egrioglu, E.2    ASıkgil, B.3
  • 37
    • 84881426024 scopus 로고    scopus 로고
    • An ARMA type fuzzy time series forecasting method based on particle swarm optimization
    • (Article ID 935815)
    • [37] Egrioglu, E., Yolcu U, U., Aladag, C.H., Kocak, C., An ARMA type fuzzy time series forecasting method based on particle swarm optimization. Math. Probl. Eng., 2013, 2013 (Article ID 935815).
    • (2013) Math. Probl. Eng. , vol.2013
    • Egrioglu, E.1    Yolcu U, U.2    Aladag, C.H.3    Kocak, C.4
  • 38
    • 84886665028 scopus 로고    scopus 로고
    • First- Order ARMA type fuzzy time series method based on fuzzy logic relation tables
    • (Article ID 769125)
    • [38] Kocak, C., First- Order ARMA type fuzzy time series method based on fuzzy logic relation tables. Math. Probl. Eng., 2013, 2013 (Article ID 769125).
    • (2013) Math. Probl. Eng. , vol.2013
    • Kocak, C.1
  • 39
    • 85018418093 scopus 로고    scopus 로고
    • Recurrent Type fuzzy time series forecasting method based on artificial neural networks
    • [39] Kocak, C., Egrioglu, E., Yolcu, U., Recurrent Type fuzzy time series forecasting method based on artificial neural networks. Am. J. Oper. Syst. 5 (2015), 111–124.
    • (2015) Am. J. Oper. Syst. , vol.5 , pp. 111-124
    • Kocak, C.1    Egrioglu, E.2    Yolcu, U.3
  • 40
    • 84938124812 scopus 로고    scopus 로고
    • A new high order fuzzy ARMA time series forecasting method by using neural networks to define fuzzy relations
    • (Article ID 128097)
    • [40] Kocak, C., A new high order fuzzy ARMA time series forecasting method by using neural networks to define fuzzy relations. Math. Probl. Eng., 2015, 2015 (Article ID 128097).
    • (2015) Math. Probl. Eng. , vol.2015
    • Kocak, C.1
  • 41
    • 68249136965 scopus 로고
    • Comparing predictive accuracy, journal of business and economic statistics
    • [41] Diebold, F.X., Mariano, R., Comparing predictive accuracy, journal of business and economic statistics. Math. Probl. Eng. 13 (1995), 253–265.
    • (1995) Math. Probl. Eng. , vol.13 , pp. 253-265
    • Diebold, F.X.1    Mariano, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.