메뉴 건너뛰기




Volumn 363, Issue 2, 2006, Pages 481-491

The application of neural networks to forecast fuzzy time series

Author keywords

Backpropagation; Forecasting; Nonlinear; Stock index

Indexed keywords

FORECASTING; FUZZY SETS; MATHEMATICAL MODELS; PATTERN RECOGNITION; PROBLEM SOLVING;

EID: 33644868985     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2005.08.014     Document Type: Article
Times cited : (270)

References (33)
  • 1
    • 0001073047 scopus 로고    scopus 로고
    • Forecasting enrollments based on fuzzy time series
    • S.-M. Chen Forecasting enrollments based on fuzzy time series Fuzzy Sets and Systems 81 1996 311 319
    • (1996) Fuzzy Sets and Systems , vol.81 , pp. 311-319
    • Chen, S.-M.1
  • 2
    • 0036098015 scopus 로고    scopus 로고
    • Forecasting enrollments based on high-order fuzzy time series
    • S.-M. Chen Forecasting enrollments based on high-order fuzzy time series Cybernet. Syst.: Int. J. 33 1 2000 1 16
    • (2000) Cybernet. Syst.: Int. J. , vol.33 , Issue.1 , pp. 1-16
    • Chen, S.-M.1
  • 3
    • 0032202643 scopus 로고    scopus 로고
    • Handling forecasting problems using fuzzy time series
    • J.R. Hwang, S.-M. Chen, and C.-H. Lee Handling forecasting problems using fuzzy time series Fuzzy Sets and Systems 100 1998 217 228
    • (1998) Fuzzy Sets and Systems , vol.100 , pp. 217-228
    • Hwang, J.R.1    Chen, S.-M.2    Lee, C.-H.3
  • 4
    • 38149147511 scopus 로고
    • Forecasting enrollments with fuzzy time series - Part 1
    • Q. Song, and B.S. Chissom Forecasting enrollments with fuzzy time series - Part 1 Fuzzy Sets and Systems 54 1993 1 9
    • (1993) Fuzzy Sets and Systems , vol.54 , pp. 1-9
    • Song, Q.1    Chissom, B.S.2
  • 5
    • 38149146997 scopus 로고
    • Forecasting enrollments with fuzzy time series - Part 2
    • Q. Song, and B.S. Chissom Forecasting enrollments with fuzzy time series - Part 2 Fuzzy Sets and Systems 62 1994 1 8
    • (1994) Fuzzy Sets and Systems , vol.62 , pp. 1-8
    • Song, Q.1    Chissom, B.S.2
  • 6
    • 0035502048 scopus 로고    scopus 로고
    • Heuristic models of fuzzy time series for forecasting
    • K. Huarng Heuristic models of fuzzy time series for forecasting Fuzzy Sets and Systems 123 3 2001 369 386
    • (2001) Fuzzy Sets and Systems , vol.123 , Issue.3 , pp. 369-386
    • Huarng, K.1
  • 7
    • 0035502063 scopus 로고    scopus 로고
    • Effective lengths of intervals to improve forecasting in fuzzy time series
    • K. Huarng Effective lengths of intervals to improve forecasting in fuzzy time series Fuzzy Sets and Systems 123 3 2001 387 394
    • (2001) Fuzzy Sets and Systems , vol.123 , Issue.3 , pp. 387-394
    • Huarng, K.1
  • 8
    • 18844455522 scopus 로고    scopus 로고
    • A Type 2 fuzzy time series model for stock index forecasting
    • K. Huarng, and H.-K. Yu A Type 2 fuzzy time series model for stock index forecasting Physica A 353 2005 445 462
    • (2005) Physica A , vol.353 , pp. 445-462
    • Huarng, K.1    Yu, H.-K.2
  • 9
    • 10444268889 scopus 로고    scopus 로고
    • A refined fuzzy time-series model for forecasting
    • H.-K. Yu A refined fuzzy time-series model for forecasting Physica A 346 3-4 2005 657 681
    • (2005) Physica A , vol.346 , Issue.3-4 , pp. 657-681
    • Yu, H.-K.1
  • 10
    • 13444251121 scopus 로고    scopus 로고
    • Weighted fuzzy time series models for TAIEX forecasting
    • H.-K. Yu Weighted fuzzy time series models for TAIEX forecasting Physica A 349 2005 609 624
    • (2005) Physica A , vol.349 , pp. 609-624
    • Yu, H.-K.1
  • 11
    • 0033724579 scopus 로고    scopus 로고
    • Temperature prediction using fuzzy time series
    • S.-M. Chen, and J.R. Hwang Temperature prediction using fuzzy time series IEEE Trans. Syst. Man Cybern. B 30 2 2000 263 275
    • (2000) IEEE Trans. Syst. Man Cybern. B , vol.30 , Issue.2 , pp. 263-275
    • Chen, S.-M.1    Hwang, J.R.2
  • 13
    • 33644851775 scopus 로고    scopus 로고
    • A dynamic approach to adjusting lengths of intervals in fuzzy time series forecasting
    • K. Huarng, and H.-K. Yu A dynamic approach to adjusting lengths of intervals in fuzzy time series forecasting Intell. Data Anal. 8 1 2004 3 27
    • (2004) Intell. Data Anal. , vol.8 , Issue.1 , pp. 3-27
    • Huarng, K.1    Yu, H.-K.2
  • 14
    • 10444269135 scopus 로고    scopus 로고
    • An Nth order heuristic fuzzy time series model for TAIEX forecasting
    • K. Huarng, and H.-K. Yu An Nth order heuristic fuzzy time series model for TAIEX forecasting Int. J. Fuzzy Syst. 5 4 2003 247 253
    • (2003) Int. J. Fuzzy Syst. , vol.5 , Issue.4 , pp. 247-253
    • Huarng, K.1    Yu, H.-K.2
  • 15
    • 0028462006 scopus 로고
    • A comparison of fuzzy forecasting and Markov modeling
    • J. Sullivan, and W.H. Woodall A comparison of fuzzy forecasting and Markov modeling Fuzzy Sets and Systems 64 1994 279 293
    • (1994) Fuzzy Sets and Systems , vol.64 , pp. 279-293
    • Sullivan, J.1    Woodall, W.H.2
  • 17
    • 0028387642 scopus 로고
    • Neural networks: Applications in industry, business and science
    • B. Widrow, D. Rumelhart, and M.A. Lehr Neural networks: Applications in industry, business and science Commun. ACM 37 3 1994 93 105
    • (1994) Commun. ACM , vol.37 , Issue.3 , pp. 93-105
    • Widrow, B.1    Rumelhart, D.2    Lehr, M.A.3
  • 18
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G. Zhang, B.E. Patuwo, and M.Y. Hu Forecasting with artificial neural networks: the state of the art Int. J. Forecast. 14 1998 35 62
    • (1998) Int. J. Forecast. , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 21
    • 34548790520 scopus 로고    scopus 로고
    • Business Forecasting with Artificial Neural Networks: An Overview
    • G. Peter Zhang Idea Group Publishing Hershey, PA
    • G. Peter Zhang Business Forecasting with Artificial Neural Networks: An Overview G. Peter Zhang Neural Networks in Business Forecasting 2004 Idea Group Publishing Hershey, PA 1 22
    • (2004) Neural Networks in Business Forecasting , pp. 1-22
    • Peter Zhang, G.1
  • 24
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • G. Cybenko Approximation by superpositions of sigmoidal function Math. Control Signals Syst. 2 1989 303 314
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 25
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi On the approximate realization of continuous mappings by neural networks Neural Networks 2 1989 183 192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 26
    • 0025751820 scopus 로고
    • Approximation capabilities of multiplier feed-forward networks
    • K. Hornik Approximation capabilities of multiplier feed-forward networks Neural Networks 4 1991 251 257
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 27
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • K. Hornik Some new results on neural network approximation Neural Networks 6 1993 1069 1072
    • (1993) Neural Networks , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 28
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 33
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • M. Adya, and F. Collopy How effective are neural networks at forecasting and prediction? A review and evaluation J. Forecast. 17 1998 481 495
    • (1998) J. Forecast. , vol.17 , pp. 481-495
    • Adya, M.1    Collopy, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.