메뉴 건너뛰기




Volumn 81, Issue 11, 2019, Pages 4343-4365

Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model

Author keywords

Parameter estimation; Regularization; Volterra equation

Indexed keywords

ALGORITHM; BIOLOGICAL MODEL; COMPUTER SIMULATION; DISEASE PREDISPOSITION; DISEASE TRANSMISSION; EBOLA HEMORRHAGIC FEVER; EPIDEMIC; FORECASTING; HUMAN; INCIDENCE; INFLUENZA; MARKOV CHAIN; MATHEMATICAL PHENOMENA; NONPARAMETRIC TEST; PROCEDURES; SPANISH INFLUENZA; STATISTICAL MODEL; TIME FACTOR;

EID: 85018393850     PISSN: 00928240     EISSN: 15229602     Source Type: Journal    
DOI: 10.1007/s11538-017-0284-3     Document Type: Article
Times cited : (58)

References (36)
  • 1
    • 84931068321 scopus 로고    scopus 로고
    • A nonstandard approximation of pseudoinverse and a new stopping criterion for iterative regularization
    • Bakushinsky AB, Smirnova AB, Liu H (2015) A nonstandard approximation of pseudoinverse and a new stopping criterion for iterative regularization. Inverse Ill Posed Probl 23(3):195–210
    • (2015) Inverse Ill Posed Probl , vol.23 , Issue.3 , pp. 195-210
    • Bakushinsky, A.B.1    Smirnova, A.B.2    Liu, H.3
  • 3
    • 0036590892 scopus 로고    scopus 로고
    • Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model
    • Bjørnstad ON, Finkenstädt BF, Grenfell BT (2002) Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecol Monogr 72(2):169–184
    • (2002) Ecol Monogr , vol.72 , Issue.2 , pp. 169-184
    • Bjørnstad, O.N.1    Finkenstädt, B.F.2    Grenfell, B.T.3
  • 5
    • 70350365793 scopus 로고    scopus 로고
    • Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus
    • Capistrán MA, Moreles MA, Lara B (2009) Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus. Bull Math Biol 71(8):1890–1901
    • (2009) Bull Math Biol , vol.71 , Issue.8 , pp. 1890-1901
    • Capistrán, M.A.1    Moreles, M.A.2    Lara, B.3
  • 6
    • 42049099048 scopus 로고    scopus 로고
    • Estimating the impact of schoolclosure on influenza transmission from sentinel data
    • Cauchemez S, Valleron A-J, Boelle P-Y, Flahault A, Ferguson NM (2008) Estimating the impact of schoolclosure on influenza transmission from sentinel data. Nature 452(7188):750–754
    • (2008) Nature , vol.452 , Issue.7188 , pp. 750-754
    • Cauchemez, S.1    Valleron, A.-J.2    Boelle, P.-Y.3    Flahault, A.4    Ferguson, N.M.5
  • 7
    • 2642573296 scopus 로고    scopus 로고
    • The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda
    • Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM (2004) The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol 229(1):119–126
    • (2004) J Theor Biol , vol.229 , Issue.1 , pp. 119-126
    • Chowell, G.1    Hengartner, N.W.2    Castillo-Chavez, C.3    Fenimore, P.W.4    Hyman, J.M.5
  • 8
    • 33846862467 scopus 로고    scopus 로고
    • Comparative estimation of the reproduction number for pandemic influenza from daily case notification data
    • Chowell G, Nishiura H, Bettencourt LM (2007) Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface R Soc 4(12):155–166
    • (2007) J R Soc Interface R Soc , vol.4 , Issue.12 , pp. 155-166
    • Chowell, G.1    Nishiura, H.2    Bettencourt, L.M.3
  • 9
    • 84979608830 scopus 로고    scopus 로고
    • Mathematical models to characterize early epidemic growth: a review
    • Chowell G, Sattenspiel L, Bansal S, Viboud C (2016) Mathematical models to characterize early epidemic growth: a review. Phys Life Rev 18:66–97
    • (2016) Phys Life Rev , vol.18 , pp. 66-97
    • Chowell, G.1    Sattenspiel, L.2    Bansal, S.3    Viboud, C.4
  • 10
    • 84940367230 scopus 로고    scopus 로고
    • The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates
    • Chowell G, Viboud C, Hyman JM, Simonsen L (2015) The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Curr. doi:10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
    • (2015) PLoS Curr
    • Chowell, G.1    Viboud, C.2    Hyman, J.M.3    Simonsen, L.4
  • 12
    • 84961266867 scopus 로고    scopus 로고
    • Mathematical modeling of the West Africa Ebola epidemic
    • Chretien JP, Riley S, George DB (2015) Mathematical modeling of the West Africa Ebola epidemic. eLife 4:e09186
    • (2015) eLife , vol.4
    • Chretien, J.P.1    Riley, S.2    George, D.B.3
  • 13
    • 0024398861 scopus 로고
    • Risk behavior-based model of the cubic growth of acquired immunodeficiency syndrome in the United States
    • Colgate SA, Stanley EA, Hyman JM, Layne SP, Qualls C (1989) Risk behavior-based model of the cubic growth of acquired immunodeficiency syndrome in the United States. Proc Nat Acad Sci USA 86(12):4793–4797
    • (1989) Proc Nat Acad Sci USA , vol.86 , Issue.12 , pp. 4793-4797
    • Colgate, S.A.1    Stanley, E.A.2    Hyman, J.M.3    Layne, S.P.4    Qualls, C.5
  • 14
    • 84879121893 scopus 로고    scopus 로고
    • Capturing the time-varying drivers of an epidemic using stochastic dynamical systems
    • Dureau J, Kalogeropoulos K, Baguelin M (2013) Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. Biostatistics 14(3):541–555
    • (2013) Biostatistics , vol.14 , Issue.3 , pp. 541-555
    • Dureau, J.1    Kalogeropoulos, K.2    Baguelin, M.3
  • 16
    • 0034360414 scopus 로고    scopus 로고
    • Time series modelling of childhood diseases: a dynamical systems approach
    • Finkenstädt BF, Grenfell BT (2000) Time series modelling of childhood diseases: a dynamical systems approach. J R Stat Soc Ser C (Appl Stat) 49(2):187–205
    • (2000) J R Stat Soc Ser C (Appl Stat) , vol.49 , Issue.2 , pp. 187-205
    • Finkenstädt, B.F.1    Grenfell, B.T.2
  • 17
    • 79551545262 scopus 로고    scopus 로고
    • Parameter identification in epidemic models
    • Hadeler KP (2011) Parameter identification in epidemic models. Math Biosci 229(2):185–189
    • (2011) Math Biosci , vol.229 , Issue.2 , pp. 185-189
    • Hadeler, K.P.1
  • 18
    • 84970926480 scopus 로고    scopus 로고
    • A three-scale network model for the early growth dynamics of 2014 West Africa Ebola epidemic
    • Kiskowski MA (2014) A three-scale network model for the early growth dynamics of 2014 West Africa Ebola epidemic. PLOS Curr. doi:10.1371/currents.outbreaks.c6efe8274dc55274f05cbcb62bbe6070
    • (2014) PLOS Curr
    • Kiskowski, M.A.1
  • 19
    • 84966359452 scopus 로고    scopus 로고
    • Reconstruction of disease transmission rates: applications to measles, dengue, and influenza
    • Lange A (2016) Reconstruction of disease transmission rates: applications to measles, dengue, and influenza. J Theor Biol 400:138–153
    • (2016) J Theor Biol , vol.400 , pp. 138-153
    • Lange, A.1
  • 20
    • 33845491978 scopus 로고    scopus 로고
    • Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study
    • Lekone PE, Finkenstädt BF (2006) Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62(4):1170–1177
    • (2006) Biometrics , vol.62 , Issue.4 , pp. 1170-1177
    • Lekone, P.E.1    Finkenstädt, B.F.2
  • 24
    • 84921319630 scopus 로고    scopus 로고
    • Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis
    • Merler S, Ajelli M, Fumanelli L, Gomes MF, Piontti AP, Rossi L, Chao DL, Longini IM Jr, Halloran ME, Vespignani A (2015) Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis 15(2):204–211
    • (2015) Lancet Infect Dis , vol.15 , Issue.2 , pp. 204-211
    • Merler, S.1    Ajelli, M.2    Fumanelli, L.3    Gomes, M.F.4    Piontti, A.P.5    Rossi, L.6    Chao, D.L.7    Longini, I.M.8    Halloran, M.E.9    Vespignani, A.10
  • 26
    • 41349106348 scopus 로고    scopus 로고
    • Spread of epidemic disease on networks
    • Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016128
    • (2002) Phys Rev E , vol.66 , Issue.1 , pp. 016128
    • Newman, M.E.J.1
  • 27
    • 84868336032 scopus 로고    scopus 로고
    • Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem
    • Pollicott M, Wang H, Weiss H (2012) Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem. J Biol Dyn 6(2):509–523
    • (2012) J Biol Dyn , vol.6 , Issue.2 , pp. 509-523
    • Pollicott, M.1    Wang, H.2    Weiss, H.3
  • 28
    • 79952481627 scopus 로고    scopus 로고
    • First principles modeling of nonlinear incidence rates in seasonal epidemics
    • Ponciano JM, Capistrán MA (2011) First principles modeling of nonlinear incidence rates in seasonal epidemics. PLoS Comput Biol 7(2):e1001079
    • (2011) PLoS Comput Biol , vol.7 , Issue.2
    • Ponciano, J.M.1    Capistrán, M.A.2
  • 30
    • 3242889980 scopus 로고    scopus 로고
    • Polynomial epidemics and clustering in contact networks
    • Szendroi B, Csnyi G (2004) Polynomial epidemics and clustering in contact networks. Proc R Soc Lond B Biol Sci 271(Suppl 5):S364–S366
    • (2004) Proc R Soc Lond B Biol Sci , vol.271 , pp. S364-S366
    • Szendroi, B.1    Csnyi, G.2
  • 31
    • 77950235523 scopus 로고    scopus 로고
    • A review of data needed to parameterize a dynamic model of measles in developing countries
    • Szusz EK, Garrison LP, Bauch CT (2010) A review of data needed to parameterize a dynamic model of measles in developing countries. BMC Res Notes 3(1):1
    • (2010) BMC Res Notes , vol.3 , Issue.1 , pp. 1
    • Szusz, E.K.1    Garrison, L.P.2    Bauch, C.T.3
  • 33
    • 84957107119 scopus 로고    scopus 로고
    • A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks
    • Viboud C, Simonsen L, Chowell G (2016) A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15:27–37
    • (2016) Epidemics , vol.15 , pp. 27-37
    • Viboud, C.1    Simonsen, L.2    Chowell, G.3
  • 35
    • 85080760076 scopus 로고    scopus 로고
    • Ebola Situation Report—30 March, retrieved 6/01/16
    • World Health Organization, Ebola Situation Report—30 March 2016, retrieved 6/01/16. http://apps.who.int/ebola/current-situation/ebola-situation-report-30-march-2016
    • (2016)
  • 36
    • 4143075752 scopus 로고    scopus 로고
    • Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics
    • Xia Y, Bjørnstad ON, Grenfell BT (2004) Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am Nat 164(2):267–281
    • (2004) Am Nat , vol.164 , Issue.2 , pp. 267-281
    • Xia, Y.1    Bjørnstad, O.N.2    Grenfell, B.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.