-
1
-
-
30344451052
-
Competing approaches to predicting supreme court decision making
-
Martin AD, Quinn KM, Ruger TW, Kim PT. Competing approaches to predicting supreme court decision making. Perspectives on Politics, 2004; 2(4):761-767. https://doi. org/10. 1017/S1537592704040502
-
(2004)
Perspectives on Politics
, vol.2
, Issue.4
, pp. 761-767
-
-
Martin, A.D.1
Quinn, K.M.2
Ruger, T.W.3
Kim, P.T.4
-
2
-
-
80655132051
-
Justice blocks and predictability of us supreme court votes
-
PMID: 22096533
-
Guimerà R., Sales-Pardo M. Justice blocks and predictability of us supreme court votes. PloS One, 2011; 6(11):e27188. https://doi. org/10. 1371/journal. pone. 0027188 PMID: 22096533
-
(2011)
PloS One
, vol.6
, Issue.11
, pp. e27188
-
-
Guimerà, R.1
Sales-Pardo, M.2
-
3
-
-
2942556501
-
The supreme court forecasting project: Legal and political science approaches to predicting supreme court decisionmaking
-
Ruger TW, Kim PT, Martin AD, Quinn KM. The supreme court forecasting project: Legal and political science approaches to predicting supreme court decisionmaking. Columbia Law Review, 2004; 104 (4):1150-1209. https://doi. org/10. 2307/4099370
-
(2004)
Columbia Law Review
, vol.104
, Issue.4
, pp. 1150-1209
-
-
Ruger, T.W.1
Kim, P.T.2
Martin, A.D.3
Quinn, K.M.4
-
4
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning, 2001; 45(1):5-32. https://doi. org/10. 1023/ A:1010933404324
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
84897386797
-
Quantitative legal predictiondordhow i learned to stop worrying and start preparing for the data driven future of the legal services industry
-
Katz DM. Quantitative legal predictiondordhow i learned to stop worrying and start preparing for the data driven future of the legal services industry. Emory Law Journal, 2013; 62(4): 909-966.
-
(2013)
Emory Law Journal
, vol.62
, Issue.4
, pp. 909-966
-
-
Katz, D.M.1
-
8
-
-
84859418371
-
Online learning and online convex optimization
-
Shalev-Shwartz S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 2011; 4(2):107-194. https://doi. org/10. 1561/2200000018
-
(2011)
Foundations and Trends in Machine Learning
, vol.4
, Issue.2
, pp. 107-194
-
-
Shalev-Shwartz, S.1
-
10
-
-
0031286123
-
Separation-of-powers games in the positive theory of congress and courts
-
Segal JA. Separation-of-powers games in the positive theory of congress and courts. American Political Science Review, 1997; 91(1):28-44. https://doi. org/10. 2307/2952257
-
(1997)
American Political Science Review
, vol.91
, Issue.1
, pp. 28-44
-
-
Segal, J.A.1
-
11
-
-
37749013683
-
Ideological drift among supreme court justices: Who, when, and how important
-
Epstein L, Martin AD, Quinn KM, Segal JA. Ideological drift among supreme court justices: Who, when, and how important. Northwestern University Law Review, 2007; 101(4):1483-1542.
-
(2007)
Northwestern University Law Review
, vol.101
, Issue.4
, pp. 1483-1542
-
-
Epstein, L.1
Martin, A.D.2
Quinn, K.M.3
Segal, J.A.4
-
12
-
-
35648972333
-
Assessing preference change on the us supreme court
-
Martin AD, Quinn KM. Assessing preference change on the us supreme court. Journal of Law, Economics, and Organization, 2007; 23(2):365-385. https://doi. org/10. 1093/jleo/ewm028
-
(2007)
Journal of Law, Economics, and Organization
, vol.23
, Issue.2
, pp. 365-385
-
-
Martin, A.D.1
Quinn, K.M.2
-
13
-
-
0032220662
-
Of time and consensual norms in the Supreme Court
-
Calderia GA, Zorn C. Of time and consensual norms in the Supreme Court. American Journal of Political Science, 1998; 42(3):874-902. https://doi. org/10. 2307/2991733
-
(1998)
American Journal of Political Science
, vol.42
, Issue.3
, pp. 874-902
-
-
Calderia, G.A.1
Zorn, C.2
-
14
-
-
78649556848
-
Did a switch in time save nine
-
Ho DE, Quinn KM. Did a Switch in Time Save Nine Journal of Legal Analysis, 2010; 2(1):69-113. https://doi. org/10. 1093/jla/2. 1. 69
-
(2010)
Journal of Legal Analysis
, vol.2
, Issue.1
, pp. 69-113
-
-
Ho, D.E.1
Quinn, K.M.2
-
15
-
-
35148841492
-
Large-scale structure of time evolving citation networks
-
Leicht EA, Clarkson G, Shedden K, Newman MEJ. Large-scale structure of time evolving citation networks. The European Physical Journal B, 2007; 59(1):75-83. https://doi. org/10. 1140/epjb/e2007-00271-7
-
(2007)
The European Physical Journal B
, vol.59
, Issue.1
, pp. 75-83
-
-
Leicht, E.A.1
Clarkson, G.2
Shedden, K.3
Newman, M.E.J.4
-
16
-
-
0347759679
-
-
(SCDB-Legacy-01)
-
Spaeth HJ, Epstein L, Martin AD, Segal JA, Ruger TJ, Benesh SC. 2016 Supreme Court Database, Version 2016 Legacy Release v01. (SCDB-Legacy-01) http://Supremecourtdatabase. org
-
2016 Supreme Court Database, Version 2016 Legacy Release v01
-
-
Spaeth, H.J.1
Epstein, L.2
Martin, A.D.3
Segal, J.A.4
Ruger, T.J.5
Benesh, S.C.6
-
18
-
-
52949133084
-
Does legal doctrine matter unpacking law and policy preferences on the us supreme court
-
Bailey MA, Maltzman F. Does legal doctrine matter unpacking law and policy preferences on the us supreme court. American Political Science Review, 2008; 102(3):369-384. https://doi. org/10. 1017/ S0003055408080283
-
(2008)
American Political Science Review
, vol.102
, Issue.3
, pp. 369-384
-
-
Bailey, M.A.1
Maltzman, F.2
-
19
-
-
84957965495
-
Standing the test of time: The breadth of majority coalitions and the fate of us supreme court precedents
-
Benjamin SM, Desmarais BA. Standing the test of time: The breadth of majority coalitions and the fate of us supreme court precedents. Journal of Legal Analysis, 2012; 4(2):445-469. https://doi. org/10. 1093/jla/las016
-
(2012)
Journal of Legal Analysis
, vol.4
, Issue.2
, pp. 445-469
-
-
Benjamin, S.M.1
Desmarais, B.A.2
-
20
-
-
0038097605
-
Dynamic ideal point estimation via markov chain monte carlo for the US Supreme Court, 1953-1999
-
Martin AD, Quinn KM. Dynamic ideal point estimation via markov chain monte carlo for the US Supreme Court, 1953-1999. Political Analysis, 2002; 10(2):134-153. https://doi. org/10. 1093/pan/10. 2. 134
-
(2002)
Political Analysis
, vol.10
, Issue.2
, pp. 134-153
-
-
Martin, A.D.1
Quinn, K.M.2
-
21
-
-
84974489026
-
Ideological values and the votes of US Supreme Court justices revisited
-
Segal JA, Epstein L, Cameron CM, Spaeth HJ. Ideological values and the votes of US Supreme Court justices revisited, The Journal of Politics, 1995; 57(3):812-823. https://doi. org/10. 2307/2960194
-
(1995)
The Journal of Politics
, vol.57
, Issue.3
, pp. 812-823
-
-
Segal, J.A.1
Epstein, L.2
Cameron, C.M.3
Spaeth, H.J.4
-
22
-
-
84934963328
-
Statistical mechanics of the us supreme court
-
Lee ED, Broedersz CP, Bialek W. Statistical Mechanics of the US Supreme Court, Journal of Statistical Physics, 2015; 160(2): 275-301. https://doi. org/10. 1007/s10955-015-1253-6
-
(2015)
Journal of Statistical Physics
, vol.160
, Issue.2
, pp. 275-301
-
-
Lee, E.D.1
Broedersz, C.P.2
Bialek, W.3
-
23
-
-
0030495883
-
The influence of stare decisis on the votes of United States supreme court justices
-
Segal JA, Spaeth HJ. The influence of stare decisis on the votes of united states supreme court justices. American Journal of Political Science, 1996; 40(4):971-1003. https://doi. org/10. 2307/2111738
-
(1996)
American Journal of Political Science
, vol.40
, Issue.4
, pp. 971-1003
-
-
Segal, J.A.1
Spaeth, H.J.2
-
24
-
-
84920079860
-
Coding complexity: Bringing law to the empirical analysis of the supreme court
-
Shapiro C. Coding complexity: Bringing law to the empirical analysis of the supreme court. Hastings Law Journal, 2008; 160(2):60:477.
-
(2008)
Hastings Law Journal
, vol.160
, Issue.2
-
-
Shapiro, C.1
-
26
-
-
85017641815
-
Supreme court prediction model v2
-
Bommarito MJ. Supreme Court Prediction Model v2. GitHub Repository, https://github. com/mjbommar/ scotus-predict-v2
-
GitHub Repository
-
-
Bommarito, M.J.1
-
27
-
-
84867842716
-
Supreme court reversal rates: Evaluating the federal courts of appeals
-
Hofer RE. Supreme Court Reversal Rates: Evaluating the Federal Courts of Appeals. American Bar AssociationdLandslide, 2010; 2(3):8-11.
-
(2010)
American Bar AssociationdLandslide
, vol.2
, Issue.3
, pp. 8-11
-
-
Hofer, R.E.1
-
28
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2011; 12:2825-2830.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
30
-
-
84978978745
-
Keras: Deep Learning library for TensorFlow and Theano
-
Chollet F. Keras: Deep Learning library for TensorFlow and Theano, Github, 2015; https://github. com/ fchollet/keras
-
(2015)
Github
-
-
Chollet, F.1
-
33
-
-
85016265063
-
Predicting judicial decisions of the European Court of Human Rights: A natural language processing perspective
-
Aletras N, Tsarapatsanis D, Preoiuc-Pietro D, Lampos V. Predicting judicial decisions of the European Court of Human Rights: A natural language processing perspective. PeerJ Computer Science, 2016; 2: e93. https://doi. org/10. 7717/peerj-cs. 93
-
(2016)
PeerJ Computer Science
, vol.2
, pp. e93
-
-
Aletras, N.1
Tsarapatsanis, D.2
Preoiuc-Pietro, D.3
Lampos, V.4
-
34
-
-
84888190400
-
The law machine
-
Harbert T. The Law Machine. IEEE Spectrum, 2013; 50(11):31-54. https://doi. org/10. 1109/MSPEC. 2013. 6655836
-
(2013)
IEEE Spectrum
, vol.50
, Issue.11
, pp. 31-54
-
-
Harbert, T.1
-
35
-
-
67849135036
-
Automatically classifying case texts and predicting outcomes
-
Ashley KD, BruÈninghaus S. Automatically Classifying Case Texts and Predicting Outcomes. Artificial Intelligence and Law. 2009; 17(2):125-65. https://doi. org/10. 1007/s10506-009-9077-9
-
(2009)
Artificial Intelligence and Law.
, vol.17
, Issue.2
, pp. 125-165
-
-
Ashley, K.D.1
Bruninghaus, S.2
-
36
-
-
84870345184
-
Predicting securities fraud settlements and amounts: A hierarchical Bayesian model of federal securities class action lawsuits
-
McShane BB, Watson OP, Baker T, Griffith SJ. Predicting securities fraud settlements and amounts: A hierarchical Bayesian model of federal securities class action lawsuits. Journal of Empirical Legal Studies. 2012; 9(3):482-510. https://doi. org/10. 1111/j. 1740-1461. 2012. 01260. x
-
(2012)
Journal of Empirical Legal Studies.
, vol.9
, Issue.3
, pp. 482-510
-
-
McShane, B.B.1
Watson, O.P.2
Baker, T.3
Griffith, S.J.4
-
38
-
-
84897464530
-
Machine learning and law
-
Surden H. Machine learning and law. Washington Law Review. 2014; 89(1):87-115.
-
(2014)
Washington Law Review.
, vol.89
, Issue.1
, pp. 87-115
-
-
Surden, H.1
-
39
-
-
85017652794
-
Choice of law: An empirical analysis
-
Sanga S. Choice of law: An empirical analysis. Journal of Empirical Legal Studies. 2014; 11(4): 894-928. https://doi. org/10. 1111/jels. 12059
-
(2014)
Journal of Empirical Legal Studies.
, vol.11
, Issue.4
, pp. 894-928
-
-
Sanga, S.1
-
40
-
-
84857565588
-
The measure of a MAC: A machine-learning protocol for analyzing force majeure clauses in M&A agreements
-
Talley E, O'Kane D. The measure of a MAC: A machine-learning protocol for analyzing force majeure clauses in M&A agreements. Journal of Institutional and Theoretical Economics. 2012; 168(1): 181-201. https://doi. org/10. 1628/093245612799440177
-
(2012)
Journal of Institutional and Theoretical Economics.
, vol.168
, Issue.1
, pp. 181-201
-
-
Talley, E.1
O'Kane, D.2
|