메뉴 건너뛰기




Volumn 12, Issue 4, 2017, Pages

A general approach for predicting the behavior of the Supreme Court of the United States

Author keywords

[No Author keywords available]

Indexed keywords

BEHAVIOR; CLASSIFIER; COURT; HUMAN; JUSTICE; MAJOR CLINICAL STUDY; MODEL; NONPARAMETRIC TEST; PREDICTION; QUANTITATIVE STUDY; RANDOM FOREST; UNITED STATES; FORECASTING; JURISPRUDENCE; MACHINE LEARNING; SOCIAL JUSTICE; TRENDS;

EID: 85017652700     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0174698     Document Type: Article
Times cited : (314)

References (42)
  • 1
    • 30344451052 scopus 로고    scopus 로고
    • Competing approaches to predicting supreme court decision making
    • Martin AD, Quinn KM, Ruger TW, Kim PT. Competing approaches to predicting supreme court decision making. Perspectives on Politics, 2004; 2(4):761-767. https://doi. org/10. 1017/S1537592704040502
    • (2004) Perspectives on Politics , vol.2 , Issue.4 , pp. 761-767
    • Martin, A.D.1    Quinn, K.M.2    Ruger, T.W.3    Kim, P.T.4
  • 2
    • 80655132051 scopus 로고    scopus 로고
    • Justice blocks and predictability of us supreme court votes
    • PMID: 22096533
    • Guimerà R., Sales-Pardo M. Justice blocks and predictability of us supreme court votes. PloS One, 2011; 6(11):e27188. https://doi. org/10. 1371/journal. pone. 0027188 PMID: 22096533
    • (2011) PloS One , vol.6 , Issue.11 , pp. e27188
    • Guimerà, R.1    Sales-Pardo, M.2
  • 3
    • 2942556501 scopus 로고    scopus 로고
    • The supreme court forecasting project: Legal and political science approaches to predicting supreme court decisionmaking
    • Ruger TW, Kim PT, Martin AD, Quinn KM. The supreme court forecasting project: Legal and political science approaches to predicting supreme court decisionmaking. Columbia Law Review, 2004; 104 (4):1150-1209. https://doi. org/10. 2307/4099370
    • (2004) Columbia Law Review , vol.104 , Issue.4 , pp. 1150-1209
    • Ruger, T.W.1    Kim, P.T.2    Martin, A.D.3    Quinn, K.M.4
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning, 2001; 45(1):5-32. https://doi. org/10. 1023/ A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 84897386797 scopus 로고    scopus 로고
    • Quantitative legal predictiondordhow i learned to stop worrying and start preparing for the data driven future of the legal services industry
    • Katz DM. Quantitative legal predictiondordhow i learned to stop worrying and start preparing for the data driven future of the legal services industry. Emory Law Journal, 2013; 62(4): 909-966.
    • (2013) Emory Law Journal , vol.62 , Issue.4 , pp. 909-966
    • Katz, D.M.1
  • 8
    • 84859418371 scopus 로고    scopus 로고
    • Online learning and online convex optimization
    • Shalev-Shwartz S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 2011; 4(2):107-194. https://doi. org/10. 1561/2200000018
    • (2011) Foundations and Trends in Machine Learning , vol.4 , Issue.2 , pp. 107-194
    • Shalev-Shwartz, S.1
  • 10
    • 0031286123 scopus 로고    scopus 로고
    • Separation-of-powers games in the positive theory of congress and courts
    • Segal JA. Separation-of-powers games in the positive theory of congress and courts. American Political Science Review, 1997; 91(1):28-44. https://doi. org/10. 2307/2952257
    • (1997) American Political Science Review , vol.91 , Issue.1 , pp. 28-44
    • Segal, J.A.1
  • 11
  • 12
    • 35648972333 scopus 로고    scopus 로고
    • Assessing preference change on the us supreme court
    • Martin AD, Quinn KM. Assessing preference change on the us supreme court. Journal of Law, Economics, and Organization, 2007; 23(2):365-385. https://doi. org/10. 1093/jleo/ewm028
    • (2007) Journal of Law, Economics, and Organization , vol.23 , Issue.2 , pp. 365-385
    • Martin, A.D.1    Quinn, K.M.2
  • 13
    • 0032220662 scopus 로고    scopus 로고
    • Of time and consensual norms in the Supreme Court
    • Calderia GA, Zorn C. Of time and consensual norms in the Supreme Court. American Journal of Political Science, 1998; 42(3):874-902. https://doi. org/10. 2307/2991733
    • (1998) American Journal of Political Science , vol.42 , Issue.3 , pp. 874-902
    • Calderia, G.A.1    Zorn, C.2
  • 14
    • 78649556848 scopus 로고    scopus 로고
    • Did a switch in time save nine
    • Ho DE, Quinn KM. Did a Switch in Time Save Nine Journal of Legal Analysis, 2010; 2(1):69-113. https://doi. org/10. 1093/jla/2. 1. 69
    • (2010) Journal of Legal Analysis , vol.2 , Issue.1 , pp. 69-113
    • Ho, D.E.1    Quinn, K.M.2
  • 18
    • 52949133084 scopus 로고    scopus 로고
    • Does legal doctrine matter unpacking law and policy preferences on the us supreme court
    • Bailey MA, Maltzman F. Does legal doctrine matter unpacking law and policy preferences on the us supreme court. American Political Science Review, 2008; 102(3):369-384. https://doi. org/10. 1017/ S0003055408080283
    • (2008) American Political Science Review , vol.102 , Issue.3 , pp. 369-384
    • Bailey, M.A.1    Maltzman, F.2
  • 19
    • 84957965495 scopus 로고    scopus 로고
    • Standing the test of time: The breadth of majority coalitions and the fate of us supreme court precedents
    • Benjamin SM, Desmarais BA. Standing the test of time: The breadth of majority coalitions and the fate of us supreme court precedents. Journal of Legal Analysis, 2012; 4(2):445-469. https://doi. org/10. 1093/jla/las016
    • (2012) Journal of Legal Analysis , vol.4 , Issue.2 , pp. 445-469
    • Benjamin, S.M.1    Desmarais, B.A.2
  • 20
    • 0038097605 scopus 로고    scopus 로고
    • Dynamic ideal point estimation via markov chain monte carlo for the US Supreme Court, 1953-1999
    • Martin AD, Quinn KM. Dynamic ideal point estimation via markov chain monte carlo for the US Supreme Court, 1953-1999. Political Analysis, 2002; 10(2):134-153. https://doi. org/10. 1093/pan/10. 2. 134
    • (2002) Political Analysis , vol.10 , Issue.2 , pp. 134-153
    • Martin, A.D.1    Quinn, K.M.2
  • 21
    • 84974489026 scopus 로고
    • Ideological values and the votes of US Supreme Court justices revisited
    • Segal JA, Epstein L, Cameron CM, Spaeth HJ. Ideological values and the votes of US Supreme Court justices revisited, The Journal of Politics, 1995; 57(3):812-823. https://doi. org/10. 2307/2960194
    • (1995) The Journal of Politics , vol.57 , Issue.3 , pp. 812-823
    • Segal, J.A.1    Epstein, L.2    Cameron, C.M.3    Spaeth, H.J.4
  • 22
    • 84934963328 scopus 로고    scopus 로고
    • Statistical mechanics of the us supreme court
    • Lee ED, Broedersz CP, Bialek W. Statistical Mechanics of the US Supreme Court, Journal of Statistical Physics, 2015; 160(2): 275-301. https://doi. org/10. 1007/s10955-015-1253-6
    • (2015) Journal of Statistical Physics , vol.160 , Issue.2 , pp. 275-301
    • Lee, E.D.1    Broedersz, C.P.2    Bialek, W.3
  • 23
    • 0030495883 scopus 로고    scopus 로고
    • The influence of stare decisis on the votes of United States supreme court justices
    • Segal JA, Spaeth HJ. The influence of stare decisis on the votes of united states supreme court justices. American Journal of Political Science, 1996; 40(4):971-1003. https://doi. org/10. 2307/2111738
    • (1996) American Journal of Political Science , vol.40 , Issue.4 , pp. 971-1003
    • Segal, J.A.1    Spaeth, H.J.2
  • 24
    • 84920079860 scopus 로고    scopus 로고
    • Coding complexity: Bringing law to the empirical analysis of the supreme court
    • Shapiro C. Coding complexity: Bringing law to the empirical analysis of the supreme court. Hastings Law Journal, 2008; 160(2):60:477.
    • (2008) Hastings Law Journal , vol.160 , Issue.2
    • Shapiro, C.1
  • 26
    • 85017641815 scopus 로고    scopus 로고
    • Supreme court prediction model v2
    • Bommarito MJ. Supreme Court Prediction Model v2. GitHub Repository, https://github. com/mjbommar/ scotus-predict-v2
    • GitHub Repository
    • Bommarito, M.J.1
  • 27
    • 84867842716 scopus 로고    scopus 로고
    • Supreme court reversal rates: Evaluating the federal courts of appeals
    • Hofer RE. Supreme Court Reversal Rates: Evaluating the Federal Courts of Appeals. American Bar AssociationdLandslide, 2010; 2(3):8-11.
    • (2010) American Bar AssociationdLandslide , vol.2 , Issue.3 , pp. 8-11
    • Hofer, R.E.1
  • 30
    • 84978978745 scopus 로고    scopus 로고
    • Keras: Deep Learning library for TensorFlow and Theano
    • Chollet F. Keras: Deep Learning library for TensorFlow and Theano, Github, 2015; https://github. com/ fchollet/keras
    • (2015) Github
    • Chollet, F.1
  • 33
    • 85016265063 scopus 로고    scopus 로고
    • Predicting judicial decisions of the European Court of Human Rights: A natural language processing perspective
    • Aletras N, Tsarapatsanis D, Preoiuc-Pietro D, Lampos V. Predicting judicial decisions of the European Court of Human Rights: A natural language processing perspective. PeerJ Computer Science, 2016; 2: e93. https://doi. org/10. 7717/peerj-cs. 93
    • (2016) PeerJ Computer Science , vol.2 , pp. e93
    • Aletras, N.1    Tsarapatsanis, D.2    Preoiuc-Pietro, D.3    Lampos, V.4
  • 34
    • 84888190400 scopus 로고    scopus 로고
    • The law machine
    • Harbert T. The Law Machine. IEEE Spectrum, 2013; 50(11):31-54. https://doi. org/10. 1109/MSPEC. 2013. 6655836
    • (2013) IEEE Spectrum , vol.50 , Issue.11 , pp. 31-54
    • Harbert, T.1
  • 35
    • 67849135036 scopus 로고    scopus 로고
    • Automatically classifying case texts and predicting outcomes
    • Ashley KD, BruÈninghaus S. Automatically Classifying Case Texts and Predicting Outcomes. Artificial Intelligence and Law. 2009; 17(2):125-65. https://doi. org/10. 1007/s10506-009-9077-9
    • (2009) Artificial Intelligence and Law. , vol.17 , Issue.2 , pp. 125-165
    • Ashley, K.D.1    Bruninghaus, S.2
  • 36
    • 84870345184 scopus 로고    scopus 로고
    • Predicting securities fraud settlements and amounts: A hierarchical Bayesian model of federal securities class action lawsuits
    • McShane BB, Watson OP, Baker T, Griffith SJ. Predicting securities fraud settlements and amounts: A hierarchical Bayesian model of federal securities class action lawsuits. Journal of Empirical Legal Studies. 2012; 9(3):482-510. https://doi. org/10. 1111/j. 1740-1461. 2012. 01260. x
    • (2012) Journal of Empirical Legal Studies. , vol.9 , Issue.3 , pp. 482-510
    • McShane, B.B.1    Watson, O.P.2    Baker, T.3    Griffith, S.J.4
  • 38
    • 84897464530 scopus 로고    scopus 로고
    • Machine learning and law
    • Surden H. Machine learning and law. Washington Law Review. 2014; 89(1):87-115.
    • (2014) Washington Law Review. , vol.89 , Issue.1 , pp. 87-115
    • Surden, H.1
  • 39
    • 85017652794 scopus 로고    scopus 로고
    • Choice of law: An empirical analysis
    • Sanga S. Choice of law: An empirical analysis. Journal of Empirical Legal Studies. 2014; 11(4): 894-928. https://doi. org/10. 1111/jels. 12059
    • (2014) Journal of Empirical Legal Studies. , vol.11 , Issue.4 , pp. 894-928
    • Sanga, S.1
  • 40
    • 84857565588 scopus 로고    scopus 로고
    • The measure of a MAC: A machine-learning protocol for analyzing force majeure clauses in M&A agreements
    • Talley E, O'Kane D. The measure of a MAC: A machine-learning protocol for analyzing force majeure clauses in M&A agreements. Journal of Institutional and Theoretical Economics. 2012; 168(1): 181-201. https://doi. org/10. 1628/093245612799440177
    • (2012) Journal of Institutional and Theoretical Economics. , vol.168 , Issue.1 , pp. 181-201
    • Talley, E.1    O'Kane, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.