-
7
-
-
0038534484
-
-
E. Akin, J. Auslander, and K. Berg, When is a transitive map chaotic, in: Convergence in Ergodic Theory and Probability, de Gruyter, 1996, 25-40.
-
(1996)
When is a Transitive Map Chaotic, In: Convergence in Ergodic Theory and Probability, De Gruyter
, pp. 25-40
-
-
Akin, E.1
Auslander, J.2
Berg, K.3
-
9
-
-
85087538042
-
-
E. Akin, M. Hurley and J. Kennedy, Dynamics of topologically generic homeomor-phisms, Mem. Amer. Math. Soc. 164 (2003), no. 783.
-
(2003)
Dynamics of Topologically Generic Homeomor-Phisms, Mem. Amer. Math. Soc
, vol.164
, Issue.783
-
-
Akin, E.1
Hurley, M.2
Kennedy, J.3
-
12
-
-
34250211911
-
-
S. Bezuglyi, A. H. Dooley and J. Kwiatkowski, Topologies on the group of Borel automorphisms of a standard Borel space, ibid. 27 (2006), 333-385.
-
(2006)
Topologies on the Group of Borel Automorphisms of a Standard Borel Space, Ibid
, vol.27
, pp. 333-385
-
-
Bezuglyi, S.1
Dooley, A.H.2
Kwiatkowski, J.3
-
13
-
-
26444542503
-
The Rokhlin lemma for homeomor-phisms of a Cantor set
-
S. Bezuglyi, A. H. Dooley and K. Medynets, The Rokhlin lemma for homeomor-phisms of a Cantor set, Proc. Amer. Math. Soc. 134 (2005), 2957-2964.
-
(2005)
Proc. Amer. Math. Soc
, vol.134
, pp. 2957-2964
-
-
Bezuglyi, S.1
Dooley, A.H.2
Medynets, K.3
-
14
-
-
85021127955
-
-
S. Bezuglyi, A. H. Dooley and K. Medynets, Approximation in ergodic theory, Borel, and Cantor dynamics, in: Algebraic and Topological Dynamics, Contemp. Math. 385, Amer. Math. Soc., 2005, 39-64.
-
Approximation in Ergodic Theory, Borel, and Cantor Dynamics, In: Algebraic and Topological Dynamics, Contemp. Math. 385, Amer. Math. Soc
, vol.2005
, pp. 39-64
-
-
Bezuglyi, S.1
Dooley, A.H.2
Medynets, K.3
-
15
-
-
0013534510
-
-
Narosa, New Delhi
-
J. R. Choksi and M. G. Nadkarni, Baire category in space of measures, unitary operators, and transformations, in: Invariant Subspaces and Allied Topics, Narosa, New Delhi, 1990, 147-163.
-
(1990)
Baire Category in Space of Measures, Unitary Operators, and Transformations, In: Invariant Subspaces and Allied Topics
, pp. 147-163
-
-
Choksi, J.R.1
Nadkarni, M.G.2
-
16
-
-
0011829595
-
-
Springer
-
J. R. Choksi and V. S. Prasad, Approximation and Baire category theorems in ergodic theory, in: Measure Theory and its Applications, Lecture Notes in Math. 1033, Springer, 1983, 94-113.
-
Approximation and Baire Category Theorems in Ergodic Theory, In: Measure Theory and Its Applications, Lecture Notes in Math. 1033
, vol.1983
, pp. 94-113
-
-
Choksi, J.R.1
Prasad, V.S.2
-
21
-
-
33646727744
-
-
H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Dio-phantine approximation, Math. Systems Theory 1 (1967), 1-49.
-
(1967)
Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Dio-Phantine Approximation, Math. Systems Theory
, vol.1
, pp. 1-49
-
-
Furstenberg, H.1
-
23
-
-
85021072336
-
-
E. Glasner and J. King, A zero-one law for dynamical properties, in: Topological Dynamics and Applications (Minneapolis, MN, 1995), Contemp. Math. 215, Amer. Math. Soc., 1998, 231-242.
-
A Zero-One Law for Dynamical Properties, In: Topological Dynamics and Applications (Minneapolis, MN, 1995), Contemp. Math. 215, Amer. Math. Soc
, vol.1998
, pp. 231-242
-
-
Glasner, E.1
King, J.2
-
24
-
-
33845800455
-
-
E. Glasner, J.-P. Thouvenot and B. Weiss, Every countable group has the weak Rohlin property, Bull. London Math. Soc. 38, (2006), 932-936.
-
(2006)
Every Countable Group has the Weak Rohlin Property, Bull. London Math. Soc
, vol.38
, pp. 932-936
-
-
Glasner, E.1
Thouvenot, J.-P.2
Weiss, B.3
-
30
-
-
84962995482
-
-
G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254.
-
(1949)
Embedding Theorems for Groups, J. London Math. Soc
, vol.24
, pp. 247-254
-
-
Higman, G.1
Neumann, B.H.2
Neumann, H.3
-
35
-
-
84962994611
-
The small index property for ω-stable ω-categorical structures and for the random graph
-
W. Hodges, I. Hodkinson, D. Lascar and S. Shelah, The small index property for ω-stable ω-categorical structures and for the random graph, J. London Math. Soc. 48 (1993), 204-218.
-
(1993)
J. London Math. Soc
, vol.48
, pp. 204-218
-
-
Hodges, W.1
Hodkinson, I.2
Lascar, D.3
Shelah, S.4
-
37
-
-
85021067025
-
-
A. del Junco, Disjointness of measure-preserving transformations, minimal self-join-ings and category, in: Ergodic Theory and Dynamical Systems, I (College Park, MD, 1979-80), Progr. Math. 10, Birkhäuser, 1981, 81-89.
-
Disjointness of Measure-Preserving Transformations, Minimal Self-Join-Ings and Category, In: Ergodic Theory and Dynamical Systems, I (College Park, MD, 1979-80), Progr. Math. 10, Birkhäuser
, vol.1981
, pp. 81-89
-
-
Del Junco, A.1
-
44
-
-
0003391813
-
-
Academic Press
-
K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.
-
(1966)
Topology
, vol.1
-
-
Kuratowski, K.1
-
53
-
-
0004129402
-
-
3rd ed., W. C. Brown, Dubuque, IA
-
J. J. Rotman, The Theory of Groups, 3rd ed., W. C. Brown, Dubuque, IA, 1980.
-
(1980)
The Theory of Groups
-
-
Rotman, J.J.1
-
54
-
-
38149120196
-
-
D. Rudolph, Residuality and orbit equivalence, in: Topological Dynamics and Applications (Minneapolis, MN, 1995), Contemp. Math. 215, Amer. Math. Soc., 1998, 243-254.
-
(1998)
Residuality and Orbit Equivalence, In: Topological Dynamics and Applications (Minneapolis, MN, 1995), Contemp. Math. 215, Amer. Math. Soc
, pp. 243-254
-
-
Rudolph, D.1
-
57
-
-
33646455163
-
-
Cambridge Univ. Press
-
B. Weiss, Actions of amenable groups, in: Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser. 310, Cambridge Univ. Press, 2003, 226-262.
-
(2003)
Actions of Amenable Groups, In: Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser. 310
, pp. 226-262
-
-
Weiss, B.1
|