-
1
-
-
44249086425
-
Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship
-
Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., Adjei, A. A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584-594 (2008).
-
(2008)
Mayo Clin. Proc.
, vol.83
, pp. 584-594
-
-
Molina, J.R.1
Yang, P.2
Cassivi, S.D.3
Schild, S.E.4
Adjei, A.A.5
-
2
-
-
84893416081
-
-
Available at Accessed: 23rd September 2016
-
SEER stat fact sheets: Lung and bronchus cancer. Available at: Http://seer. cancer. gov/statfacts/html/lungb. html (Accessed: 23rd September 2016) (2014).
-
(2014)
SEER Stat Fact Sheets: Lung and Bronchus Cancer
-
-
-
3
-
-
84867139157
-
Radiomics: The process and the challenges
-
Kumar, V., et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 30, 1234-1248 (2012).
-
(2012)
Magn. Reson. Imaging
, vol.30
, pp. 1234-1248
-
-
Kumar, V.1
-
4
-
-
84857037061
-
Radiomics: Extracting more information from medical images using advanced feature analysis
-
Lambin, P., et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441-446 (2012).
-
(2012)
Eur. J. Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
-
5
-
-
77950065664
-
Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image
-
Wang, H., et al. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image. Eur. J. Radiol. 74, 124-129 (2010).
-
(2010)
Eur. J. Radiol.
, vol.74
, pp. 124-129
-
-
Wang, H.1
-
6
-
-
83755172956
-
Developing a classifier model for lung tumors in CT-scan images
-
Basu, S., et al. Developing a classifier model for lung tumors in CT-scan images. in 2011 IEEE International Conference on Systems, Man, and Cybernetics 1306-1312, doi:10. 1109/ICSMC. 2011. 6083840 (2011).
-
(2011)
2011 IEEE International Conference On Systems, Man, and Cybernetics
, pp. 1306-1312
-
-
Basu, S.1
-
7
-
-
77957909316
-
Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage
-
Ganeshan, B., Abaleke, S., Young, R. C. D., Chatwin, C. R., Miles, K. A. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10, 137-143 (2010).
-
(2010)
Cancer Imaging
, vol.10
, pp. 137-143
-
-
Ganeshan, B.1
Abaleke, S.2
Young, R.C.D.3
Chatwin, C.R.4
Miles, K.A.5
-
8
-
-
84861459453
-
Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: A potential marker of survival
-
Ganeshan, B., Panayiotou, E., Burnand, K., Dizdarevic, S., Miles, K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: A potential marker of survival. Eur. Radiol. 22, 796-802 (2012).
-
(2012)
Eur. Radiol.
, vol.22
, pp. 796-802
-
-
Ganeshan, B.1
Panayiotou, E.2
Burnand, K.3
Dizdarevic, S.4
Miles, K.5
-
9
-
-
84879862659
-
Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer
-
Win, T., et al. Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin. Cancer Res. 19, 3591-3599 (2013).
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 3591-3599
-
-
Win, T.1
-
10
-
-
84902515123
-
Reproducibility and prognosis of quantitative features extracted from CT images
-
Balagurunathan, Y., et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl. Oncol. 7, 72-87 (2014).
-
(2014)
Transl. Oncol.
, vol.7
, pp. 72-87
-
-
Balagurunathan, Y.1
-
11
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts, H. J. W. L., et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 1-8 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 1-8
-
-
Aerts, H.J.W.L.1
-
12
-
-
84938850455
-
Radiomic feature clusters and prognostic signatures specific for Lung and Head Neck cancer
-
Parmar, C., et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head, Neck cancer. Sci. Rep 5, 11044 (2015).
-
(2015)
Sci. Rep
, vol.5
, pp. 11044
-
-
Parmar, C.1
-
13
-
-
84964335379
-
Radiomic phenotype features predict pathological response in non-small cell lung cancer
-
Coroller, T. P., et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother. Oncol. 119, 480-486 (2016).
-
(2016)
Radiother. Oncol.
, vol.119
, pp. 480-486
-
-
Coroller, T.P.1
-
14
-
-
84927569956
-
CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
-
Coroller, T. P., et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 114, 345-350 (2015).
-
(2015)
Radiother. Oncol.
, vol.114
, pp. 345-350
-
-
Coroller, T.P.1
-
15
-
-
84908211707
-
Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer
-
Fried, D. V., et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 90, 834-842 (2014).
-
(2014)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.90
, pp. 834-842
-
-
Fried, D.V.1
-
16
-
-
84903770590
-
Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic
-
Weiss, G. J., et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One 9, e100244 (2014).
-
(2014)
PLoS One
, vol.9
, pp. e100244
-
-
Weiss, G.J.1
-
17
-
-
84864349266
-
Non-small cell lung cancer: Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results
-
Gevaert, O., et al. Non-small cell lung cancer: Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results. Radiology 264, 387-396 (2012).
-
(2012)
Radiology
, vol.264
, pp. 387-396
-
-
Gevaert, O.1
-
18
-
-
84962826173
-
How to use CT texture analysis for prognostication of non-small cell lung cancer
-
Miles, K. A. How to use CT texture analysis for prognostication of non-small cell lung cancer. Cancer Imaging 16, 10 (2016).
-
(2016)
Cancer Imaging
, vol.16
, pp. 10
-
-
Miles, K.A.1
-
19
-
-
85006224670
-
CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy
-
Rao, S. X., et al. CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy? United Eur. Gastroenterol. J. 4, 257-263 (2016).
-
(2016)
United Eur. Gastroenterol. J.
, vol.4
, pp. 257-263
-
-
Rao, S.X.1
-
20
-
-
80053066718
-
Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker
-
Goh, V., et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261, 165-171 (2011).
-
(2011)
Radiology
, vol.261
, pp. 165-171
-
-
Goh, V.1
-
21
-
-
84925348152
-
Lung texture in serial thoracic computed tomography scans: Correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development
-
Cunliffe, A., et al. Lung texture in serial thoracic computed tomography scans: Correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int. J. Radiat. Oncol. Biol. Phys. 91, 1048-1056 (2015).
-
(2015)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.91
, pp. 1048-1056
-
-
Cunliffe, A.1
-
22
-
-
84983262746
-
Early variation of FDG-PET radiomics features in NSCLC is related to overall survival-The 'delta radiomics' concept
-
Carvalho, S., et al. Early variation of FDG-PET radiomics features in NSCLC is related to overall survival-the 'delta radiomics' concept. in. Radiotherapy and Oncology 118, S20-S21 (2016).
-
(2016)
Radiotherapy and Oncology
, vol.118
, pp. S20-S21
-
-
Carvalho, S.1
-
23
-
-
77956862485
-
New response evaluation criteria in solid tumors (RECIST) guidelines for advanced non-small cell lung cancer: Comparison with original RECIST and impact on assessment of tumor response to targeted therapy
-
Nishino, M., et al. New response evaluation criteria in solid tumors (RECIST) guidelines for advanced non-small cell lung cancer: Comparison with original RECIST and impact on assessment of tumor response to targeted therapy. Am. J. Roentgenol 195, W221-W228 (2010).
-
(2010)
Am. J. Roentgenol
, vol.195
, pp. W221-W228
-
-
Nishino, M.1
-
24
-
-
33745953240
-
Measures of response: RECIST, WHO, and new alternatives
-
Jaffe, C. C. Measures of response: RECIST, WHO, and new alternatives. J. Clin. Oncol. 24, 3245-3251 (2006).
-
(2006)
J. Clin. Oncol.
, vol.24
, pp. 3245-3251
-
-
Jaffe, C.C.1
-
25
-
-
57849117384
-
New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1. 1)
-
Eisenhauer, E. A., et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1. 1). Eur. J. Cancer 45, 228-247 (2009).
-
(2009)
Eur. J. Cancer
, vol.45
, pp. 228-247
-
-
Eisenhauer, E.A.1
-
26
-
-
84983299683
-
-
The University of Texas MD Anderson Cancer Center Available at Accessed: 4th September 2015
-
The University of Texas MD Anderson Cancer Center. Image-guided adaptive conformal photon versus proton therapy. Available at: Https://clinicaltrials. gov/ct2/show/record/NCT00915005 (Accessed: 4th September 2015).
-
Image-guided Adaptive Conformal Photon Versus Proton Therapy
-
-
-
27
-
-
79959728931
-
Landmark analysis at the 25-year landmark point
-
Dafni, U. Landmark analysis at the 25-year landmark point. Circ. Cardiovasc. Qual. Outcomes 4, 363-371 (2011).
-
(2011)
Circ. Cardiovasc. Qual. Outcomes
, vol.4
, pp. 363-371
-
-
Dafni, U.1
-
28
-
-
0021047301
-
Analysis of survival by tumor response
-
Anderson, J., Cain, K., Gelber, R. Analysis of survival by tumor response. J. Clin. Oncol. 1, 710-719 (1983).
-
(1983)
J. Clin. Oncol.
, vol.1
, pp. 710-719
-
-
Anderson, J.1
Cain, K.2
Gelber, R.3
-
29
-
-
0037100122
-
Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy
-
Seppenwoolde, Y., et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol 53, 822-834 (2002).
-
(2002)
Int. J. Radiat. Oncol
, vol.53
, pp. 822-834
-
-
Seppenwoolde, Y.1
-
30
-
-
84939573489
-
Preliminary investigation into sources of uncertainty in quantitative imaging features
-
Fave, X., et al. Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput. Med. Imaging Graph. 44, 4-11 (2015).
-
(2015)
Comput. Med. Imaging Graph.
, vol.44
, pp. 4-11
-
-
Fave, X.1
-
31
-
-
13844294405
-
Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy
-
Wang, H., et al. Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 725-735 (2005).
-
(2005)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.61
, pp. 725-735
-
-
Wang, H.1
-
32
-
-
34547484895
-
Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach
-
Chao, K. S. C., et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int. J. Radiat. Oncol. Biol. Phys. 68, 1512-1521 (2007).
-
(2007)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.68
, pp. 1512-1521
-
-
Chao, K.S.C.1
-
33
-
-
34247882923
-
Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer
-
Liu, H. H., et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 531-540 (2007).
-
(2007)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.68
, pp. 531-540
-
-
Liu, H.H.1
-
34
-
-
84923913977
-
IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics
-
Zhang, L., et al. IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics. Med. Phys. 42, 1341-1353 (2015).
-
(2015)
Med. Phys.
, vol.42
, pp. 1341-1353
-
-
Zhang, L.1
-
36
-
-
0015680481
-
Textural features for image classification
-
Haralick, R. M., Shanmugam, K., Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man. Cybern 3, 610-621 (1973).
-
(1973)
IEEE Trans. Syst. Man. Cybern
, vol.3
, pp. 610-621
-
-
Haralick, R.M.1
Shanmugam, K.2
Dinstein, I.3
-
37
-
-
0018466704
-
Statistical and structural approaches to texture
-
Haralick, R. M. Statistical and structural approaches to texture. Proc. IEEE 67, 786-804 (1979).
-
(1979)
Proc. IEEE
, vol.67
, pp. 786-804
-
-
Haralick, R.M.1
-
38
-
-
0024738619
-
Textural features corresponding to textural properties
-
Amadasun, M., King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man. Cybern 19, 1264-1274 (1989).
-
(1989)
IEEE Trans. Syst. Man. Cybern
, vol.19
, pp. 1264-1274
-
-
Amadasun, M.1
King, R.2
-
39
-
-
0001416258
-
Texture analysis using gray level run lengths
-
Galloway, M. M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4, 172-179 (1975).
-
(1975)
Comput. Graph. Image Process.
, vol.4
, pp. 172-179
-
-
Galloway, M.M.1
-
40
-
-
84983350368
-
Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer
-
Fave, X., et al. Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl. Cancer Res. 5, 349-363 (2016).
-
(2016)
Transl. Cancer Res.
, vol.5
, pp. 349-363
-
-
Fave, X.1
-
41
-
-
84943774122
-
Measuring computed tomography scanner variability of radiomics features
-
Mackin, D., et al. Measuring computed tomography scanner variability of radiomics features. Invest. Radiol. 50, 757-765 (2015).
-
(2015)
Invest. Radiol.
, vol.50
, pp. 757-765
-
-
MacKin, D.1
-
42
-
-
85017149045
-
Controlling the false discovery rate : A practical and powerful approach to multiple testing
-
Benjamini, Y., Hochberg, Y. Controlling the false discovery rate : A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289-300 (1995).
-
(1995)
J. R. Stat. Soc.
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
43
-
-
84944363874
-
Evaluating the yield of medical tests
-
Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., Rosati, R. A. Evaluating the yield of medical tests. JAMA J. Am. Med. Assoc. 247, 2543-2546 (1982).
-
(1982)
JAMA J. Am. Med. Assoc.
, vol.247
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
46
-
-
84943645306
-
Fitting linear mixed-effects models using lme4
-
Bates, D., Machler, M., Bolker, B., Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48 (2015).
-
(2015)
J. Stat. Softw.
, vol.67
, pp. 1-48
-
-
Bates, D.1
MacHler, M.2
Bolker, B.3
Walker, S.4
-
49
-
-
79951551258
-
Estimation of prediction error by using K-fold cross-validation
-
Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 21, 137-146 (2011).
-
(2011)
Stat. Comput.
, vol.21
, pp. 137-146
-
-
Fushiki, T.1
-
50
-
-
79955762500
-
Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data
-
Simon, R. M., Subramanian, J., Li, M.-C., Menezes, S. Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief. Bioinform. 12, 203-214 (2011).
-
(2011)
Brief. Bioinform.
, vol.12
, pp. 203-214
-
-
Simon, R.M.1
Subramanian, J.2
Li, M.-C.3
Menezes, S.4
-
51
-
-
0026801393
-
Why do so many prognostic factors fail to pan out
-
Hilsenbeck, S. G., Clark, G. M., McGuire, W. L. Why do so many prognostic factors fail to pan out. Breast Cancer Res. Treat. 22, 197-206 (1992).
-
(1992)
Breast Cancer Res. Treat.
, vol.22
, pp. 197-206
-
-
Hilsenbeck, S.G.1
Clark, G.M.2
McGuire, W.L.3
-
52
-
-
0030057525
-
Practical p-value adjustment for optimally selected cutpoints
-
Hilsenbeck, S. G., Clark, G. M. Practical p-value adjustment for optimally selected cutpoints. Stat. Med. 15, 103-112 (1996).
-
(1996)
Stat. Med.
, vol.15
, pp. 103-112
-
-
Hilsenbeck, S.G.1
Clark, G.M.2
-
53
-
-
84929120576
-
False discovery rates in PET and CT studies with texture features: A systematic review
-
Chalkidou, A., O'Doherty, M. J., Marsden, P. K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PLoS One 10, e0124165 (2015).
-
(2015)
PLoS One
, vol.10
, pp. e0124165
-
-
Chalkidou, A.1
O'Doherty, M.J.2
Marsden, P.K.3
-
54
-
-
84938973476
-
Response assessment to neoadjuvant therapy in soft tissue sarcomas: Using CT texture analysis in comparison to tumor size, density, and perfusion
-
Tian, F., Hayano, K., Kambadakone, A. R., Sahani, D. V. Response assessment to neoadjuvant therapy in soft tissue sarcomas: Using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom. Imaging 40, 1705-1712 (2015).
-
(2015)
Abdom. Imaging
, vol.40
, pp. 1705-1712
-
-
Tian, F.1
Hayano, K.2
Kambadakone, A.R.3
Sahani, D.V.4
|