메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer

Author keywords

[No Author keywords available]

Indexed keywords

AGED; CANCER GRADING; CANCER STAGING; DIAGNOSTIC IMAGING; FEMALE; HUMAN; IMAGE PROCESSING; KAPLAN MEIER METHOD; LUNG TUMOR; MALE; MIDDLE AGED; MORTALITY; NON SMALL CELL LUNG CANCER; PATHOLOGY; PROGNOSIS; RADIATION DOSE; RETROSPECTIVE STUDY; TUMOR RECURRENCE; VERY ELDERLY; WORKFLOW; X-RAY COMPUTED TOMOGRAPHY;

EID: 85017176308     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-017-00665-z     Document Type: Article
Times cited : (292)

References (54)
  • 1
    • 44249086425 scopus 로고    scopus 로고
    • Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship
    • Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., Adjei, A. A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584-594 (2008).
    • (2008) Mayo Clin. Proc. , vol.83 , pp. 584-594
    • Molina, J.R.1    Yang, P.2    Cassivi, S.D.3    Schild, S.E.4    Adjei, A.A.5
  • 2
    • 84893416081 scopus 로고    scopus 로고
    • Available at Accessed: 23rd September 2016
    • SEER stat fact sheets: Lung and bronchus cancer. Available at: Http://seer. cancer. gov/statfacts/html/lungb. html (Accessed: 23rd September 2016) (2014).
    • (2014) SEER Stat Fact Sheets: Lung and Bronchus Cancer
  • 3
    • 84867139157 scopus 로고    scopus 로고
    • Radiomics: The process and the challenges
    • Kumar, V., et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 30, 1234-1248 (2012).
    • (2012) Magn. Reson. Imaging , vol.30 , pp. 1234-1248
    • Kumar, V.1
  • 4
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: Extracting more information from medical images using advanced feature analysis
    • Lambin, P., et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441-446 (2012).
    • (2012) Eur. J. Cancer , vol.48 , pp. 441-446
    • Lambin, P.1
  • 5
    • 77950065664 scopus 로고    scopus 로고
    • Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image
    • Wang, H., et al. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image. Eur. J. Radiol. 74, 124-129 (2010).
    • (2010) Eur. J. Radiol. , vol.74 , pp. 124-129
    • Wang, H.1
  • 6
    • 83755172956 scopus 로고    scopus 로고
    • Developing a classifier model for lung tumors in CT-scan images
    • Basu, S., et al. Developing a classifier model for lung tumors in CT-scan images. in 2011 IEEE International Conference on Systems, Man, and Cybernetics 1306-1312, doi:10. 1109/ICSMC. 2011. 6083840 (2011).
    • (2011) 2011 IEEE International Conference On Systems, Man, and Cybernetics , pp. 1306-1312
    • Basu, S.1
  • 7
    • 77957909316 scopus 로고    scopus 로고
    • Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage
    • Ganeshan, B., Abaleke, S., Young, R. C. D., Chatwin, C. R., Miles, K. A. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10, 137-143 (2010).
    • (2010) Cancer Imaging , vol.10 , pp. 137-143
    • Ganeshan, B.1    Abaleke, S.2    Young, R.C.D.3    Chatwin, C.R.4    Miles, K.A.5
  • 8
    • 84861459453 scopus 로고    scopus 로고
    • Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: A potential marker of survival
    • Ganeshan, B., Panayiotou, E., Burnand, K., Dizdarevic, S., Miles, K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: A potential marker of survival. Eur. Radiol. 22, 796-802 (2012).
    • (2012) Eur. Radiol. , vol.22 , pp. 796-802
    • Ganeshan, B.1    Panayiotou, E.2    Burnand, K.3    Dizdarevic, S.4    Miles, K.5
  • 9
    • 84879862659 scopus 로고    scopus 로고
    • Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer
    • Win, T., et al. Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin. Cancer Res. 19, 3591-3599 (2013).
    • (2013) Clin. Cancer Res. , vol.19 , pp. 3591-3599
    • Win, T.1
  • 10
    • 84902515123 scopus 로고    scopus 로고
    • Reproducibility and prognosis of quantitative features extracted from CT images
    • Balagurunathan, Y., et al. Reproducibility and prognosis of quantitative features extracted from CT images. Transl. Oncol. 7, 72-87 (2014).
    • (2014) Transl. Oncol. , vol.7 , pp. 72-87
    • Balagurunathan, Y.1
  • 11
    • 84901946941 scopus 로고    scopus 로고
    • Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    • Aerts, H. J. W. L., et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 1-8 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 1-8
    • Aerts, H.J.W.L.1
  • 12
    • 84938850455 scopus 로고    scopus 로고
    • Radiomic feature clusters and prognostic signatures specific for Lung and Head Neck cancer
    • Parmar, C., et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head, Neck cancer. Sci. Rep 5, 11044 (2015).
    • (2015) Sci. Rep , vol.5 , pp. 11044
    • Parmar, C.1
  • 13
    • 84964335379 scopus 로고    scopus 로고
    • Radiomic phenotype features predict pathological response in non-small cell lung cancer
    • Coroller, T. P., et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother. Oncol. 119, 480-486 (2016).
    • (2016) Radiother. Oncol. , vol.119 , pp. 480-486
    • Coroller, T.P.1
  • 14
    • 84927569956 scopus 로고    scopus 로고
    • CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    • Coroller, T. P., et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 114, 345-350 (2015).
    • (2015) Radiother. Oncol. , vol.114 , pp. 345-350
    • Coroller, T.P.1
  • 15
    • 84908211707 scopus 로고    scopus 로고
    • Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer
    • Fried, D. V., et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 90, 834-842 (2014).
    • (2014) Int. J. Radiat. Oncol. Biol. Phys. , vol.90 , pp. 834-842
    • Fried, D.V.1
  • 16
    • 84903770590 scopus 로고    scopus 로고
    • Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic
    • Weiss, G. J., et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One 9, e100244 (2014).
    • (2014) PLoS One , vol.9 , pp. e100244
    • Weiss, G.J.1
  • 17
    • 84864349266 scopus 로고    scopus 로고
    • Non-small cell lung cancer: Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results
    • Gevaert, O., et al. Non-small cell lung cancer: Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results. Radiology 264, 387-396 (2012).
    • (2012) Radiology , vol.264 , pp. 387-396
    • Gevaert, O.1
  • 18
    • 84962826173 scopus 로고    scopus 로고
    • How to use CT texture analysis for prognostication of non-small cell lung cancer
    • Miles, K. A. How to use CT texture analysis for prognostication of non-small cell lung cancer. Cancer Imaging 16, 10 (2016).
    • (2016) Cancer Imaging , vol.16 , pp. 10
    • Miles, K.A.1
  • 19
    • 85006224670 scopus 로고    scopus 로고
    • CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy
    • Rao, S. X., et al. CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy? United Eur. Gastroenterol. J. 4, 257-263 (2016).
    • (2016) United Eur. Gastroenterol. J. , vol.4 , pp. 257-263
    • Rao, S.X.1
  • 20
    • 80053066718 scopus 로고    scopus 로고
    • Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker
    • Goh, V., et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261, 165-171 (2011).
    • (2011) Radiology , vol.261 , pp. 165-171
    • Goh, V.1
  • 21
    • 84925348152 scopus 로고    scopus 로고
    • Lung texture in serial thoracic computed tomography scans: Correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development
    • Cunliffe, A., et al. Lung texture in serial thoracic computed tomography scans: Correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int. J. Radiat. Oncol. Biol. Phys. 91, 1048-1056 (2015).
    • (2015) Int. J. Radiat. Oncol. Biol. Phys. , vol.91 , pp. 1048-1056
    • Cunliffe, A.1
  • 22
    • 84983262746 scopus 로고    scopus 로고
    • Early variation of FDG-PET radiomics features in NSCLC is related to overall survival-The 'delta radiomics' concept
    • Carvalho, S., et al. Early variation of FDG-PET radiomics features in NSCLC is related to overall survival-the 'delta radiomics' concept. in. Radiotherapy and Oncology 118, S20-S21 (2016).
    • (2016) Radiotherapy and Oncology , vol.118 , pp. S20-S21
    • Carvalho, S.1
  • 23
    • 77956862485 scopus 로고    scopus 로고
    • New response evaluation criteria in solid tumors (RECIST) guidelines for advanced non-small cell lung cancer: Comparison with original RECIST and impact on assessment of tumor response to targeted therapy
    • Nishino, M., et al. New response evaluation criteria in solid tumors (RECIST) guidelines for advanced non-small cell lung cancer: Comparison with original RECIST and impact on assessment of tumor response to targeted therapy. Am. J. Roentgenol 195, W221-W228 (2010).
    • (2010) Am. J. Roentgenol , vol.195 , pp. W221-W228
    • Nishino, M.1
  • 24
    • 33745953240 scopus 로고    scopus 로고
    • Measures of response: RECIST, WHO, and new alternatives
    • Jaffe, C. C. Measures of response: RECIST, WHO, and new alternatives. J. Clin. Oncol. 24, 3245-3251 (2006).
    • (2006) J. Clin. Oncol. , vol.24 , pp. 3245-3251
    • Jaffe, C.C.1
  • 25
    • 57849117384 scopus 로고    scopus 로고
    • New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1. 1)
    • Eisenhauer, E. A., et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1. 1). Eur. J. Cancer 45, 228-247 (2009).
    • (2009) Eur. J. Cancer , vol.45 , pp. 228-247
    • Eisenhauer, E.A.1
  • 26
    • 84983299683 scopus 로고    scopus 로고
    • The University of Texas MD Anderson Cancer Center Available at Accessed: 4th September 2015
    • The University of Texas MD Anderson Cancer Center. Image-guided adaptive conformal photon versus proton therapy. Available at: Https://clinicaltrials. gov/ct2/show/record/NCT00915005 (Accessed: 4th September 2015).
    • Image-guided Adaptive Conformal Photon Versus Proton Therapy
  • 27
    • 79959728931 scopus 로고    scopus 로고
    • Landmark analysis at the 25-year landmark point
    • Dafni, U. Landmark analysis at the 25-year landmark point. Circ. Cardiovasc. Qual. Outcomes 4, 363-371 (2011).
    • (2011) Circ. Cardiovasc. Qual. Outcomes , vol.4 , pp. 363-371
    • Dafni, U.1
  • 28
    • 0021047301 scopus 로고
    • Analysis of survival by tumor response
    • Anderson, J., Cain, K., Gelber, R. Analysis of survival by tumor response. J. Clin. Oncol. 1, 710-719 (1983).
    • (1983) J. Clin. Oncol. , vol.1 , pp. 710-719
    • Anderson, J.1    Cain, K.2    Gelber, R.3
  • 29
    • 0037100122 scopus 로고    scopus 로고
    • Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy
    • Seppenwoolde, Y., et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol 53, 822-834 (2002).
    • (2002) Int. J. Radiat. Oncol , vol.53 , pp. 822-834
    • Seppenwoolde, Y.1
  • 30
    • 84939573489 scopus 로고    scopus 로고
    • Preliminary investigation into sources of uncertainty in quantitative imaging features
    • Fave, X., et al. Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput. Med. Imaging Graph. 44, 4-11 (2015).
    • (2015) Comput. Med. Imaging Graph. , vol.44 , pp. 4-11
    • Fave, X.1
  • 31
    • 13844294405 scopus 로고    scopus 로고
    • Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy
    • Wang, H., et al. Implementation and validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 725-735 (2005).
    • (2005) Int. J. Radiat. Oncol. Biol. Phys. , vol.61 , pp. 725-735
    • Wang, H.1
  • 32
    • 34547484895 scopus 로고    scopus 로고
    • Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach
    • Chao, K. S. C., et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int. J. Radiat. Oncol. Biol. Phys. 68, 1512-1521 (2007).
    • (2007) Int. J. Radiat. Oncol. Biol. Phys. , vol.68 , pp. 1512-1521
    • Chao, K.S.C.1
  • 33
    • 34247882923 scopus 로고    scopus 로고
    • Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer
    • Liu, H. H., et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 531-540 (2007).
    • (2007) Int. J. Radiat. Oncol. Biol. Phys. , vol.68 , pp. 531-540
    • Liu, H.H.1
  • 34
    • 84923913977 scopus 로고    scopus 로고
    • IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics
    • Zhang, L., et al. IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics. Med. Phys. 42, 1341-1353 (2015).
    • (2015) Med. Phys. , vol.42 , pp. 1341-1353
    • Zhang, L.1
  • 37
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick, R. M. Statistical and structural approaches to texture. Proc. IEEE 67, 786-804 (1979).
    • (1979) Proc. IEEE , vol.67 , pp. 786-804
    • Haralick, R.M.1
  • 38
    • 0024738619 scopus 로고
    • Textural features corresponding to textural properties
    • Amadasun, M., King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man. Cybern 19, 1264-1274 (1989).
    • (1989) IEEE Trans. Syst. Man. Cybern , vol.19 , pp. 1264-1274
    • Amadasun, M.1    King, R.2
  • 39
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • Galloway, M. M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4, 172-179 (1975).
    • (1975) Comput. Graph. Image Process. , vol.4 , pp. 172-179
    • Galloway, M.M.1
  • 40
    • 84983350368 scopus 로고    scopus 로고
    • Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer
    • Fave, X., et al. Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl. Cancer Res. 5, 349-363 (2016).
    • (2016) Transl. Cancer Res. , vol.5 , pp. 349-363
    • Fave, X.1
  • 41
    • 84943774122 scopus 로고    scopus 로고
    • Measuring computed tomography scanner variability of radiomics features
    • Mackin, D., et al. Measuring computed tomography scanner variability of radiomics features. Invest. Radiol. 50, 757-765 (2015).
    • (2015) Invest. Radiol. , vol.50 , pp. 757-765
    • MacKin, D.1
  • 42
    • 85017149045 scopus 로고
    • Controlling the false discovery rate : A practical and powerful approach to multiple testing
    • Benjamini, Y., Hochberg, Y. Controlling the false discovery rate : A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289-300 (1995).
    • (1995) J. R. Stat. Soc. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 49
    • 79951551258 scopus 로고    scopus 로고
    • Estimation of prediction error by using K-fold cross-validation
    • Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 21, 137-146 (2011).
    • (2011) Stat. Comput. , vol.21 , pp. 137-146
    • Fushiki, T.1
  • 50
    • 79955762500 scopus 로고    scopus 로고
    • Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data
    • Simon, R. M., Subramanian, J., Li, M.-C., Menezes, S. Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief. Bioinform. 12, 203-214 (2011).
    • (2011) Brief. Bioinform. , vol.12 , pp. 203-214
    • Simon, R.M.1    Subramanian, J.2    Li, M.-C.3    Menezes, S.4
  • 52
    • 0030057525 scopus 로고    scopus 로고
    • Practical p-value adjustment for optimally selected cutpoints
    • Hilsenbeck, S. G., Clark, G. M. Practical p-value adjustment for optimally selected cutpoints. Stat. Med. 15, 103-112 (1996).
    • (1996) Stat. Med. , vol.15 , pp. 103-112
    • Hilsenbeck, S.G.1    Clark, G.M.2
  • 53
    • 84929120576 scopus 로고    scopus 로고
    • False discovery rates in PET and CT studies with texture features: A systematic review
    • Chalkidou, A., O'Doherty, M. J., Marsden, P. K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PLoS One 10, e0124165 (2015).
    • (2015) PLoS One , vol.10 , pp. e0124165
    • Chalkidou, A.1    O'Doherty, M.J.2    Marsden, P.K.3
  • 54
    • 84938973476 scopus 로고    scopus 로고
    • Response assessment to neoadjuvant therapy in soft tissue sarcomas: Using CT texture analysis in comparison to tumor size, density, and perfusion
    • Tian, F., Hayano, K., Kambadakone, A. R., Sahani, D. V. Response assessment to neoadjuvant therapy in soft tissue sarcomas: Using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom. Imaging 40, 1705-1712 (2015).
    • (2015) Abdom. Imaging , vol.40 , pp. 1705-1712
    • Tian, F.1    Hayano, K.2    Kambadakone, A.R.3    Sahani, D.V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.