메뉴 건너뛰기




Volumn 402, Issue , 2017, Pages 124-148

A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm

Author keywords

Metaheuristics; Multi objective optimization; Non dominated sorting genetic algorithm II; Vortex search algorithm

Indexed keywords

GENETIC ALGORITHMS; INVERSE PROBLEMS; LEARNING ALGORITHMS; MULTIOBJECTIVE OPTIMIZATION; VORTEX FLOW;

EID: 85016497613     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2017.03.026     Document Type: Article
Times cited : (67)

References (54)
  • 1
    • 85016473628 scopus 로고    scopus 로고
    • jMetal4.5., in
    • [1] jMetal4.5., in, 2016.
    • (2016)
  • 3
    • 84885419678 scopus 로고    scopus 로고
    • Synchronous and asynchronous Pareto-based multi-objective Artificial Bee Colony algorithms
    • [3] Akay, B., Synchronous and asynchronous Pareto-based multi-objective Artificial Bee Colony algorithms. J. Global Optim. 57 (2013), 415–445.
    • (2013) J. Global Optim. , vol.57 , pp. 415-445
    • Akay, B.1
  • 4
    • 84961627832 scopus 로고    scopus 로고
    • Multi-objective optimal reactive power dispatch using multi-objective differential evolution
    • [4] Basu, M., Multi-objective optimal reactive power dispatch using multi-objective differential evolution. Int. J. Electr. Power 82 (2016), 213–224.
    • (2016) Int. J. Electr. Power , vol.82 , pp. 213-224
    • Basu, M.1
  • 6
    • 84902126788 scopus 로고    scopus 로고
    • Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization
    • [6] Chen, X., Du, W.L., Qian, F., Multi-objective differential evolution with ranking-based mutation operator and its application in chemical process optimization. Chemometr. Intell. Lab. 136 (2014), 85–96.
    • (2014) Chemometr. Intell. Lab. , vol.136 , pp. 85-96
    • Chen, X.1    Du, W.L.2    Qian, F.3
  • 7
    • 33644978280 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization: a historical view of the field
    • [7] Coello, C.A.C., Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1 (2006), 28–36.
    • (2006) IEEE Comput. Intell. Mag. , vol.1 , pp. 28-36
    • Coello, C.A.C.1
  • 8
    • 3142756516 scopus 로고    scopus 로고
    • Handling multiple objectives with particle swarm optimization
    • [8] Coello, C.A.C., Pulido, G.T., Lechuga, M.S., Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8 (2004), 256–279.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 256-279
    • Coello, C.A.C.1    Pulido, G.T.2    Lechuga, M.S.3
  • 9
    • 84941559390 scopus 로고    scopus 로고
    • A new multi-objective particle swarm optimization algorithm based on decomposition
    • [9] Dai, C., Wang, Y.P., Ye, M., A new multi-objective particle swarm optimization algorithm based on decomposition. Inf. Sci. 325 (2015), 541–557.
    • (2015) Inf. Sci. , vol.325 , pp. 541-557
    • Dai, C.1    Wang, Y.P.2    Ye, M.3
  • 10
    • 84884411088 scopus 로고    scopus 로고
    • Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm
    • [10] Datta, D., Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm. Appl. Soft Comput. 13 (2013), 3873–3883.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 3873-3883
    • Datta, D.1
  • 11
    • 84861721237 scopus 로고    scopus 로고
    • A binary-real-coded differential evolution for unit commitment problem
    • [11] Datta, D., Dutta, S., A binary-real-coded differential evolution for unit commitment problem. Int. J. Electr. Power 42 (2012), 517–524.
    • (2012) Int. J. Electr. Power , vol.42 , pp. 517-524
    • Datta, D.1    Dutta, S.2
  • 13
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • [13] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2002), 182–197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 15
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • [15] Derrac, J., Garcia, S., Molina, D., Herrera, F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1 (2011), 3–18.
    • (2011) Swarm Evol. Comput. , vol.1 , pp. 3-18
    • Derrac, J.1    Garcia, S.2    Molina, D.3    Herrera, F.4
  • 16
    • 84922609797 scopus 로고    scopus 로고
    • A new metaheuristic for numerical function optimization: vortex Search algorithm
    • [16] Dogan, B., Olmez, T., A new metaheuristic for numerical function optimization: vortex Search algorithm. Inf. Sci. 293 (2015), 125–145.
    • (2015) Inf. Sci. , vol.293 , pp. 125-145
    • Dogan, B.1    Olmez, T.2
  • 17
    • 79960890945 scopus 로고    scopus 로고
    • jMetal: a Java framework for multi-objective optimization
    • [17] Durillo, J.J., Nebro, A.J., jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42 (2011), 760–771.
    • (2011) Adv. Eng. Softw. , vol.42 , pp. 760-771
    • Durillo, J.J.1    Nebro, A.J.2
  • 19
    • 84976324082 scopus 로고    scopus 로고
    • Low power FIR filter design using modified multi-objective Artificial Bee Colony algorithm
    • [19] Dwivedi, A.K., Ghosh, S., Londhe, N.D., Low power FIR filter design using modified multi-objective Artificial Bee Colony algorithm. Eng. Appl. Artif. Intel. 55 (2016), 58–69.
    • (2016) Eng. Appl. Artif. Intel. , vol.55 , pp. 58-69
    • Dwivedi, A.K.1    Ghosh, S.2    Londhe, N.D.3
  • 20
    • 0031701082 scopus 로고    scopus 로고
    • Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation
    • [20] Fonseca, C.M., Fleming, P.J., Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Trans. Syst. Man Cybern. - Part A 28 (1998), 26–37.
    • (1998) IEEE Trans. Syst. Man Cybern. - Part A , vol.28 , pp. 26-37
    • Fonseca, C.M.1    Fleming, P.J.2
  • 21
    • 84944811700 scopus 로고
    • The Use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • [21] Friedman, M., The Use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32 (1937), 675–701.
    • (1937) J. Am. Stat. Assoc. , vol.32 , pp. 675-701
    • Friedman, M.1
  • 22
    • 70349270458 scopus 로고    scopus 로고
    • A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization
    • [22] Garcia, S., Molina, D., Lozano, M., Herrera, F., A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization. J. Heuristics 15 (2009), 617–644.
    • (2009) J. Heuristics , vol.15 , pp. 617-644
    • Garcia, S.1    Molina, D.2    Lozano, M.3    Herrera, F.4
  • 23
    • 0003269032 scopus 로고
    • Genetic algorithms in search
    • Addison-Wesley Longman Publishing Co., Inc.
    • [23] Goldberg, D.E., Genetic algorithms in search. Optimization and Machine Learning, 1989, Addison-Wesley Longman Publishing Co., Inc.
    • (1989) Optimization and Machine Learning
    • Goldberg, D.E.1
  • 25
    • 33749860403 scopus 로고    scopus 로고
    • A review of multiobjective test problems and a scalable test problem toolkit
    • [25] Huband, S., Hingston, P., Barone, L., While, L., A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10 (2006), 477–506.
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , pp. 477-506
    • Huband, S.1    Hingston, P.2    Barone, L.3    While, L.4
  • 26
    • 84994469089 scopus 로고    scopus 로고
    • NSABC: non-dominated sorting based multi-objective Artificial Bee Colony algorithm and its application in data clustering
    • [26] Kishor, A., Singh, P.K., Prakash, J., NSABC: non-dominated sorting based multi-objective Artificial Bee Colony algorithm and its application in data clustering. Neurocomputing 216 (2016), 514–533.
    • (2016) Neurocomputing , vol.216 , pp. 514-533
    • Kishor, A.1    Singh, P.K.2    Prakash, J.3
  • 30
    • 67349108023 scopus 로고    scopus 로고
    • Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
    • [30] Li, H., Zhang, Q., Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13 (2009), 284–302.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , pp. 284-302
    • Li, H.1    Zhang, Q.2
  • 32
    • 84966659142 scopus 로고    scopus 로고
    • Efficient meta-heuristics for the multi-objective time-dependent orienteering problem
    • [32] Mei, Y., Salim, F.D., Li, X.D., Efficient meta-heuristics for the multi-objective time-dependent orienteering problem. Eur. J. Oper. Res. 254 (2016), 443–457.
    • (2016) Eur. J. Oper. Res. , vol.254 , pp. 443-457
    • Mei, Y.1    Salim, F.D.2    Li, X.D.3
  • 33
    • 84949033140 scopus 로고    scopus 로고
    • Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
    • [33] Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.D., Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47 (2016), 106–119.
    • (2016) Expert Syst. Appl. , vol.47 , pp. 106-119
    • Mirjalili, S.1    Saremi, S.2    Mirjalili, S.M.3    Coelho, L.D.4
  • 34
    • 84973550315 scopus 로고    scopus 로고
    • Sizing of a standalone photovoltaic water pumping system using a multi-objective evolutionary algorithm
    • [34] Muhsen, D.H., Ghazali, A., Khatib, T., Abed, I.A., Natsheh, E.M., Sizing of a standalone photovoltaic water pumping system using a multi-objective evolutionary algorithm. Energy 109 (2016), 961–973.
    • (2016) Energy , vol.109 , pp. 961-973
    • Muhsen, D.H.1    Ghazali, A.2    Khatib, T.3    Abed, I.A.4    Natsheh, E.M.5
  • 36
  • 37
    • 35048833865 scopus 로고    scopus 로고
    • On test functions for evolutionary multi-objective optimization
    • (Eds.) X. Yao E.K. Burke J.A. Lozano J. Smith J.J. Merelo-Guervós J.A. Bullinaria J.E. Rowe P. Tiňo A. Kabán H.-P. Schwefel Berlin Heidelberg, Berlin, Heidelberg Springer
    • [37] Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B., On test functions for evolutionary multi-objective optimization. (Eds.) Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P., (eds.) Parallel Problem Solving from Nature - PPSN VIII: 8th International Conference, Birmingham, UK, September 18-22, 2004. Proceedings, Berlin Heidelberg, Berlin, Heidelberg, 2004, Springer, 792–802.
    • (2004) Parallel Problem Solving from Nature - PPSN VIII: 8th International Conference, Birmingham, UK, September 18-22, 2004. Proceedings , pp. 792-802
    • Okabe, T.1    Jin, Y.2    Olhofer, M.3    Sendhoff, B.4
  • 38
    • 85016495773 scopus 로고    scopus 로고
    • Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems
    • [38] Psychas, I.-D., Marinaki, M., Marinakis, Y., Migdalas, A., Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst., 2016, 1–30.
    • (2016) Energy Syst. , pp. 1-30
    • Psychas, I.-D.1    Marinaki, M.2    Marinakis, Y.3    Migdalas, A.4
  • 39
    • 84974716031 scopus 로고    scopus 로고
    • A new ABC-based multiobjective optimization algorithm with an improvement approach (IBMO: improved bee colony algorithm for multiobjective optimization)
    • 2349–+
    • [39] Sag, T., Cunkas, M., A new ABC-based multiobjective optimization algorithm with an improvement approach (IBMO: improved bee colony algorithm for multiobjective optimization). Turk. J. Electr. Eng. Comput., 24, 2016 2349–+.
    • (2016) Turk. J. Electr. Eng. Comput. , vol.24
    • Sag, T.1    Cunkas, M.2
  • 40
    • 0000599395 scopus 로고
    • Multiple objective optimization with vector evaluated genetic algorithms
    • L. Erlbaum Associates Inc.
    • [40] Schaffer, J.D., Multiple objective optimization with vector evaluated genetic algorithms. Erlbaum, L., (eds.) Proceedings of the 1st International Conference on Genetic Algorithms, 1985, Associates Inc., 93–100.
    • (1985) Proceedings of the 1st International Conference on Genetic Algorithms , pp. 93-100
    • Schaffer, J.D.1
  • 41
    • 24344480582 scopus 로고    scopus 로고
    • Improving PSO-based multi-objective optimization using crowding, mutation and epsilon-dominance
    • [41] Sierra, M.R., Coello, C.A.C., Improving PSO-based multi-objective optimization using crowding, mutation and epsilon-dominance. Evol. Multi-Criterion Optim. 3410 (2005), 505–519.
    • (2005) Evol. Multi-Criterion Optim. , vol.3410 , pp. 505-519
    • Sierra, M.R.1    Coello, C.A.C.2
  • 42
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • [42] Srinivas, N., Deb, K., Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2 (1994), 221–248.
    • (1994) Evol. Comput. , vol.2 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 43
    • 84962856810 scopus 로고    scopus 로고
    • A genetic algorithm - differential evolution based hybrid framework: case study on unit commitment scheduling problem
    • [43] Trivedi, A., Srinivasan, D., Biswas, S., Reindl, T., A genetic algorithm - differential evolution based hybrid framework: case study on unit commitment scheduling problem. Inf. Sci. 354 (2016), 275–300.
    • (2016) Inf. Sci. , vol.354 , pp. 275-300
    • Trivedi, A.1    Srinivasan, D.2    Biswas, S.3    Reindl, T.4
  • 45
    • 0030085393 scopus 로고    scopus 로고
    • Multicriteria optimization using a genetic algorithm for determining a Pareto set
    • [45] Viennet, R., Fonteix, C., Marc, I., Multicriteria optimization using a genetic algorithm for determining a Pareto set. Int. J. Syst. Sci. 27 (1996), 255–260.
    • (1996) Int. J. Syst. Sci. , vol.27 , pp. 255-260
    • Viennet, R.1    Fonteix, C.2    Marc, I.3
  • 47
    • 84927963335 scopus 로고    scopus 로고
    • An elitism based multi-objective Artificial Bee Colony algorithm
    • [47] Xiang, Y., Zhou, Y.R., Liu, H.L., An elitism based multi-objective Artificial Bee Colony algorithm. Eur. J. Oper. Res. 245 (2015), 168–193.
    • (2015) Eur. J. Oper. Res. , vol.245 , pp. 168-193
    • Xiang, Y.1    Zhou, Y.R.2    Liu, H.L.3
  • 49
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D: a multiobjective evolutionary algorithm based on decomposition
    • [49] Zhang, Q.F., Li, H., MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11 (2007), 712–731.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , pp. 712-731
    • Zhang, Q.F.1    Li, H.2
  • 50
    • 0003482385 scopus 로고    scopus 로고
    • Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications
    • Swiss Federal Institute of Technology
    • [50] Zitzler, E., Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. 1999, Swiss Federal Institute of Technology, 134.
    • (1999) , pp. 134
    • Zitzler, E.1
  • 51
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: empirical results
    • [51] Zitzler, E., Deb, K., Thiele, L., Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8 (2000), 173–195.
    • (2000) Evol. Comput. , vol.8 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 52
    • 35048846146 scopus 로고    scopus 로고
    • Indicator-based selection in multiobjective search
    • [52] Zitzler, E., Kunzli, S., Indicator-based selection in multiobjective search. Lect. Notes Comput. Sc. 3242 (2004), 832–842.
    • (2004) Lect. Notes Comput. Sc. , vol.3242 , pp. 832-842
    • Zitzler, E.1    Kunzli, S.2
  • 53
    • 0004140075 scopus 로고    scopus 로고
    • SPEA2: Improving the strength Pareto evolutionary algorithm
    • [53] Zitzler, E., Laumanns, M., Thiele, L., SPEA2: Improving the strength Pareto evolutionary algorithm. ETH Zurich, 2001, 21.
    • (2001) ETH Zurich , pp. 21
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 54
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
    • [54] Zitzler, E., Thiele, L., Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3 (1999), 257–271.
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.