메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 446-454

Stochastic collapsed variational Bayesian inference for latent dirichlet allocation

Author keywords

Stochastic learning; Topic models; Variational inference

Indexed keywords

BAYESIAN NETWORKS; DATA MINING; STATISTICS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 85016473020     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487697     Document Type: Conference Paper
Times cited : (113)

References (26)
  • 5
    • 70449126967 scopus 로고    scopus 로고
    • Topic models over text streams: A study of batch and online unsupervised learning
    • A. Banerjee and S. Basu. Topic models over text streams: A study of batch and online unsupervised learning. In SIAM Data Mining, 2007.
    • (2007) SIAM Data, Mining
    • Banerjee, A.1    Basu, S.2
  • 8
    • 79953191469 scopus 로고    scopus 로고
    • What, where, when and sometimes why: Data mining twenty years of women's history abstracts
    • S. Block and D. Newman. What, where, when and sometimes why: Data mining twenty years of women's history abstracts. Journal of Women's History, 23(1):81-109, 2011.
    • (2011) Journal of Women's History , vol.23 , Issue.1 , pp. 81-109
    • Block, S.1    Newman, D.2
  • 15
    • 84979819322 scopus 로고    scopus 로고
    • Computational historiography: Data mining in a century of classics journals
    • D. Mimno. Computational historiography: Data mining in a century of classics journals. Journal on Computing and Cultural Heritage (JOCCH), 5(1):3, 2012.
    • (2012) Journal on Computing and Cultural Heritage (JOCCH) , vol.5 , Issue.1 , pp. 3
    • Mimno, D.1
  • 16
    • 84867121232 scopus 로고    scopus 로고
    • Sparse stochastic inference for latent Dirichlet allocation
    • J. Langford and J. Pineau, editors, New York, NY, USA, July, Omnipress
    • D. Mimno, M. Hoffman, and D. Blei. Sparse stochastic inference for latent Dirichlet allocation. In J. Langford and J. Pineau, editors, Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 1599-1606, New York, NY, USA, July 2012. Omnipress.
    • (2012) Proceedings of the 29th International Conference on Machine Learning (ICML-12) , pp. 1599-1606
    • Mimno, D.1    Hoffman, M.2    Blei, D.3
  • 22
    • 84867130111 scopus 로고    scopus 로고
    • Rethinking collapsed variational Bayes inference for LDA
    • J. Langford and J. Pineau, editors, New York, NY, USA, July, Omnipress
    • I. Sato and H. Nakagawa. Rethinking collapsed variational Bayes inference for LDA. In J. Langford and J. Pineau, editors, Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages 999-1006, New York, NY, USA, July 2012. Omnipress.
    • (2012) Proceedings of the 29th International Conference on Machine Learning (ICML-12) , pp. 999-1006
    • Sato, I.1    Nakagawa, H.2
  • 24


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.