-
1
-
-
84886287251
-
Engineering synthetic vaccines using cues from natural immunity
-
[1] Irvine, D.J., Swartz, M.A., Szeto, G.L., Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12 (2013), 978–990.
-
(2013)
Nat. Mater.
, vol.12
, pp. 978-990
-
-
Irvine, D.J.1
Swartz, M.A.2
Szeto, G.L.3
-
2
-
-
84948568477
-
Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells
-
[2] Conde, J., Bao, C., Tan, Y., Cui, D., Edelman, E.R., Azevedo, H.S., et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv. Funct. Mater. 25 (2015), 4183–4194.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 4183-4194
-
-
Conde, J.1
Bao, C.2
Tan, Y.3
Cui, D.4
Edelman, E.R.5
Azevedo, H.S.6
-
3
-
-
84953837416
-
Modulation of immune response using engineered nanoparticle surfaces
-
[3] Moyano, D.F., Liu, Y., Peer, D., Rotello, V.M., Modulation of immune response using engineered nanoparticle surfaces. Small 12 (2015), 76–82.
-
(2015)
Small
, vol.12
, pp. 76-82
-
-
Moyano, D.F.1
Liu, Y.2
Peer, D.3
Rotello, V.M.4
-
4
-
-
34547690726
-
Immunological properties of engineered nanomaterials
-
[4] Dobrovolskaia, M.A., McNeil, S.E., Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2 (2007), 469–478.
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 469-478
-
-
Dobrovolskaia, M.A.1
McNeil, S.E.2
-
5
-
-
70849093813
-
Materials engineering for immunomodulation
-
[5] Hubbell, J.A., Thomas, S.N., Swartz, M.A., Materials engineering for immunomodulation. Nature 462 (2009), 449–460.
-
(2009)
Nature
, vol.462
, pp. 449-460
-
-
Hubbell, J.A.1
Thomas, S.N.2
Swartz, M.A.3
-
6
-
-
85016391857
-
Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity
-
[6] Noh, Y.W., Hong, J.H., Shim, S.M., Park, H.S., Bae, H.H., Ryu, E.K., et al. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew. Chem. 125 (2013), 7838–7843.
-
(2013)
Angew. Chem.
, vol.125
, pp. 7838-7843
-
-
Noh, Y.W.1
Hong, J.H.2
Shim, S.M.3
Park, H.S.4
Bae, H.H.5
Ryu, E.K.6
-
7
-
-
84873046533
-
Biocompatibility of engineered nanoparticles for drug delivery
-
[7] Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., Chen, P., Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 166 (2013), 182–194.
-
(2013)
J. Control. Release
, vol.166
, pp. 182-194
-
-
Naahidi, S.1
Jafari, M.2
Edalat, F.3
Raymond, K.4
Khademhosseini, A.5
Chen, P.6
-
8
-
-
84960194151
-
Different-sized gold nanoparticle activator/antigen increases dendritic cells accumulation in liver-draining lymph nodes and CD8+ T cell responses
-
[8] Zhou, Q., Zhang, Y., Du, J., Li, Y., Zhou, Y., Fu, Q., et al. Different-sized gold nanoparticle activator/antigen increases dendritic cells accumulation in liver-draining lymph nodes and CD8+ T cell responses. ACS Nano 10 (2016), 2678–2692.
-
(2016)
ACS Nano
, vol.10
, pp. 2678-2692
-
-
Zhou, Q.1
Zhang, Y.2
Du, J.3
Li, Y.4
Zhou, Y.5
Fu, Q.6
-
9
-
-
84954306795
-
Nanogel-incorporated physical and chemical hybrid gels for highly effective chemo–protein combination therapy
-
[9] Wu, X., He, C., Wu, Y., Chen, X., Cheng, J., Nanogel-incorporated physical and chemical hybrid gels for highly effective chemo–protein combination therapy. Adv. Funct. Mater. 25 (2015), 6744–6755.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 6744-6755
-
-
Wu, X.1
He, C.2
Wu, Y.3
Chen, X.4
Cheng, J.5
-
10
-
-
84880877024
-
Applications of nanotechnology for immunology
-
[10] Smith, D.M., Simon, J.K., Baker, J.R. Jr., Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13 (2013), 592–605.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 592-605
-
-
Smith, D.M.1
Simon, J.K.2
Baker, J.R.3
-
11
-
-
23444451916
-
Dendritic-cell trafficking to lymph nodes through lymphatic vessels
-
[11] Randolph, G.J., Angeli, V., Swartz, M.A., Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5 (2005), 617–628.
-
(2005)
Nat. Rev. Immunol.
, vol.5
, pp. 617-628
-
-
Randolph, G.J.1
Angeli, V.2
Swartz, M.A.3
-
12
-
-
50249144544
-
T-cell activation by dendritic cells in the lymph node: lessons from the movies
-
[12] Bousso, P., T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat. Rev. Immunol. 8 (2008), 675–684.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 675-684
-
-
Bousso, P.1
-
13
-
-
35148889797
-
Exploiting lymphatic transport and complement activation in nanoparticle vaccines
-
[13] Reddy, S.T., van der Vlies, A.J., Simeoni, E., Angeli, V., Randolph, G.J., O'Neil, C.P., et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25 (2007), 1159–1164.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 1159-1164
-
-
Reddy, S.T.1
van der Vlies, A.J.2
Simeoni, E.3
Angeli, V.4
Randolph, G.J.5
O'Neil, C.P.6
-
14
-
-
33646480406
-
In vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles
-
[14] Reddy, S.T., Rehor, A., Schmoekel, H.G., Hubbell, J.A., Swartz, M.A., In vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J. Control Release 112 (2006), 26–34.
-
(2006)
J. Control Release
, vol.112
, pp. 26-34
-
-
Reddy, S.T.1
Rehor, A.2
Schmoekel, H.G.3
Hubbell, J.A.4
Swartz, M.A.5
-
15
-
-
84866681691
-
Near-infrared emitting polymer nanogels for efficient sentinel lymph node mapping
-
[15] Noh, Y.-W., Kong, S.-H., Choi, D.-Y., Park, H.S., Yang, H.-K., Lee, H.-J., et al. Near-infrared emitting polymer nanogels for efficient sentinel lymph node mapping. ACS Nano 6 (2012), 7820–7831.
-
(2012)
ACS Nano
, vol.6
, pp. 7820-7831
-
-
Noh, Y.-W.1
Kong, S.-H.2
Choi, D.-Y.3
Park, H.S.4
Yang, H.-K.5
Lee, H.-J.6
-
16
-
-
84897954314
-
Structure-based programming of lymph-node targeting in molecular vaccines
-
[16] Liu, H., Moynihan, K.D., Zheng, Y., Szeto, G.L., Li, A.V., Huang, B., et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507 (2014), 519–522.
-
(2014)
Nature
, vol.507
, pp. 519-522
-
-
Liu, H.1
Moynihan, K.D.2
Zheng, Y.3
Szeto, G.L.4
Li, A.V.5
Huang, B.6
-
17
-
-
84957436357
-
Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery
-
[17] De Koker, S., Cui, J., Vanparijs, N., Albertazzi, L., Grooten, J., Caruso, F., et al. Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery. Angew. Chem. Int. Ed. 55 (2016), 1334–1339.
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 1334-1339
-
-
De Koker, S.1
Cui, J.2
Vanparijs, N.3
Albertazzi, L.4
Grooten, J.5
Caruso, F.6
-
18
-
-
80053161466
-
In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles
-
[18] Jewell, C.M., López, S.C.B., Irvine, D.J., In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl. Acad. Sci. 108 (2011), 15745–15750.
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
, pp. 15745-15750
-
-
Jewell, C.M.1
López, S.C.B.2
Irvine, D.J.3
-
19
-
-
84921289568
-
Poly (I: C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs
-
[19] Ammi, R., De Waele, J., Willemen, Y., Van Brussel, I., Schrijvers, D.M., Lion, E., et al. Poly (I: C) as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. Pharmacol. Ther. 146 (2015), 120–131.
-
(2015)
Pharmacol. Ther.
, vol.146
, pp. 120-131
-
-
Ammi, R.1
De Waele, J.2
Willemen, Y.3
Van Brussel, I.4
Schrijvers, D.M.5
Lion, E.6
-
20
-
-
84872082784
-
Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination
-
[20] DeMuth, P.C., Garcia-Beltran, W.F., Ai-Ling, M.L., Hammond, P.T., Irvine, D.J., Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Adv. Funct. Mater. 23 (2013), 161–172.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 161-172
-
-
DeMuth, P.C.1
Garcia-Beltran, W.F.2
Ai-Ling, M.L.3
Hammond, P.T.4
Irvine, D.J.5
-
21
-
-
84885378665
-
Particulate formulations for the delivery of poly (I: C) as vaccine adjuvant
-
[21] Hafner, A.M., Corthésy, B., Merkle, H.P., Particulate formulations for the delivery of poly (I: C) as vaccine adjuvant. Adv. Drug Del Rev. 65 (2013), 1386–1399.
-
(2013)
Adv. Drug Del Rev.
, vol.65
, pp. 1386-1399
-
-
Hafner, A.M.1
Corthésy, B.2
Merkle, H.P.3
-
22
-
-
79959895629
-
Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response
-
[22] Noh, Y.-W., Jang, Y.-S., Ahn, K.-J., Lim, Y.T., Chung, B.H., Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials 32 (2011), 6254–6263.
-
(2011)
Biomaterials
, vol.32
, pp. 6254-6263
-
-
Noh, Y.-W.1
Jang, Y.-S.2
Ahn, K.-J.3
Lim, Y.T.4
Chung, B.H.5
-
23
-
-
33645513746
-
Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications
-
[23] Sung, M.H., Park, C., Kim, C.J., Poo, H., Soda, K., Ashiuchi, M., Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem. Rec. 5 (2005), 352–366.
-
(2005)
Chem. Rec.
, vol.5
, pp. 352-366
-
-
Sung, M.H.1
Park, C.2
Kim, C.J.3
Poo, H.4
Soda, K.5
Ashiuchi, M.6
-
24
-
-
0036005890
-
Interleukin-12 in anti-tumor immunity and immunotherapy
-
[24] Colombo, M.P., Trinchieri, G., Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 13 (2002), 155–168.
-
(2002)
Cytokine Growth Factor Rev.
, vol.13
, pp. 155-168
-
-
Colombo, M.P.1
Trinchieri, G.2
-
25
-
-
84923675832
-
Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo
-
[25] Matsumoto, M., Tatematsu, M., Nishikawa, F., Azuma, M., Ishii, N., Morii-Sakai, A., et al. Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo. Nat. Commun., 6, 2015, 2680.
-
(2015)
Nat. Commun.
, vol.6
, pp. 2680
-
-
Matsumoto, M.1
Tatematsu, M.2
Nishikawa, F.3
Azuma, M.4
Ishii, N.5
Morii-Sakai, A.6
-
26
-
-
76549123625
-
Opposing effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands
-
[26] Conforti, R., Ma, Y., Morel, Y., Paturel, C., Terme, M., Viaud, S., et al. Opposing effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res. 70 (2010), 490–500.
-
(2010)
Cancer Res.
, vol.70
, pp. 490-500
-
-
Conforti, R.1
Ma, Y.2
Morel, Y.3
Paturel, C.4
Terme, M.5
Viaud, S.6
-
27
-
-
84983095681
-
Adjuvant for vaccine immunotherapy of cancer–focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity
-
[27] Seya, T., Shime, H., Takeda, Y., Tatematsu, M., Takashima, K., Matsumoto, M., Adjuvant for vaccine immunotherapy of cancer–focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Sci. 106 (2015), 1659–1668.
-
(2015)
Cancer Sci.
, vol.106
, pp. 1659-1668
-
-
Seya, T.1
Shime, H.2
Takeda, Y.3
Tatematsu, M.4
Takashima, K.5
Matsumoto, M.6
-
28
-
-
84887494213
-
Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion
-
[28] Tel, J., Sittig, S.P., Blom, R.A., Cruz, L.J., Schreibelt, G., Figdor, C.G., et al. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J. Immunol. 191 (2013), 5005–5012.
-
(2013)
J. Immunol.
, vol.191
, pp. 5005-5012
-
-
Tel, J.1
Sittig, S.P.2
Blom, R.A.3
Cruz, L.J.4
Schreibelt, G.5
Figdor, C.G.6
-
29
-
-
0035865228
-
Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c− type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN
-
[29] Kadowaki, N., Antonenko, S., Liu, Y.-J., Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c− type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J. Immunol. 166 (2001), 2291–2295.
-
(2001)
J. Immunol.
, vol.166
, pp. 2291-2295
-
-
Kadowaki, N.1
Antonenko, S.2
Liu, Y.-J.3
-
30
-
-
0142092614
-
Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon
-
[30] Le Bon, A., Etchart, N., Rossmann, C., Ashton, M., Hou, S., Gewert, D., et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol. 4 (2003), 1009–1015.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 1009-1015
-
-
Le Bon, A.1
Etchart, N.2
Rossmann, C.3
Ashton, M.4
Hou, S.5
Gewert, D.6
-
31
-
-
84975832642
-
Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
-
[31] Kranz, L.M., Diken, M., Haas, H., Kreiter, S., Loquai, C., Reuter, K.C., et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534 (2016), 396–401.
-
(2016)
Nature
, vol.534
, pp. 396-401
-
-
Kranz, L.M.1
Diken, M.2
Haas, H.3
Kreiter, S.4
Loquai, C.5
Reuter, K.C.6
-
32
-
-
84962034279
-
Immunotherapy against metastatic melanoma with human iPS cell–derived myeloid cell lines producing type I interferons
-
[32] Miyashita, A., Fukushima, S., Nakahara, S., Kubo, Y., Tokuzumi, A., Yamashita, J., et al. Immunotherapy against metastatic melanoma with human iPS cell–derived myeloid cell lines producing type I interferons. Cancer Immunol. Res. 4 (2015), 248–258.
-
(2015)
Cancer Immunol. Res.
, vol.4
, pp. 248-258
-
-
Miyashita, A.1
Fukushima, S.2
Nakahara, S.3
Kubo, Y.4
Tokuzumi, A.5
Yamashita, J.6
-
33
-
-
84879228653
-
Targeting dendritic cells—why bother?
-
[33] Kreutz, M., Tacken, P.J., Figdor, C.G., Targeting dendritic cells—why bother?. Blood 121 (2013), 2836–2844.
-
(2013)
Blood
, vol.121
, pp. 2836-2844
-
-
Kreutz, M.1
Tacken, P.J.2
Figdor, C.G.3
-
34
-
-
84912079521
-
Nanovaccine loaded with poly I: C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo
-
[34] Luo, Z., Wang, C., Yi, H., Li, P., Pan, H., Liu, L., et al. Nanovaccine loaded with poly I: C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 38 (2015), 50–60.
-
(2015)
Biomaterials
, vol.38
, pp. 50-60
-
-
Luo, Z.1
Wang, C.2
Yi, H.3
Li, P.4
Pan, H.5
Liu, L.6
-
35
-
-
84919667582
-
CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses
-
[35] Rosalia, R.A., Cruz, L.J., van Duikeren, S., Tromp, A.T., Silva, A.L., Jiskoot, W., et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40 (2015), 88–97.
-
(2015)
Biomaterials
, vol.40
, pp. 88-97
-
-
Rosalia, R.A.1
Cruz, L.J.2
van Duikeren, S.3
Tromp, A.T.4
Silva, A.L.5
Jiskoot, W.6
-
36
-
-
79955157178
-
Immunostimulatory activity of polysaccharide–poly (I: C) nanoparticles
-
[36] Tincer, G., Yerlikaya, S., Yagci, F.C., Kahraman, T., Atanur, O.M., Erbatur, O., et al. Immunostimulatory activity of polysaccharide–poly (I: C) nanoparticles. Biomaterials 32 (2011), 4275–4282.
-
(2011)
Biomaterials
, vol.32
, pp. 4275-4282
-
-
Tincer, G.1
Yerlikaya, S.2
Yagci, F.C.3
Kahraman, T.4
Atanur, O.M.5
Erbatur, O.6
-
37
-
-
75649141166
-
Identification of a polyI: C-inducible membrane protein that participates in dendritic cell–mediated natural killer cell activation
-
[37] Ebihara, T., Azuma, M., Oshiumi, H., Kasamatsu, J., Iwabuchi, K., Matsumoto, K., et al. Identification of a polyI: C-inducible membrane protein that participates in dendritic cell–mediated natural killer cell activation. J. Exp. Med. 207 (2010), 2675–2687.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 2675-2687
-
-
Ebihara, T.1
Azuma, M.2
Oshiumi, H.3
Kasamatsu, J.4
Iwabuchi, K.5
Matsumoto, K.6
-
38
-
-
33846039130
-
Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells
-
[38] Akazawa, T., Ebihara, T., Okuno, M., Okuda, Y., Shingai, M., Tsujimura, K., et al. Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc. Natl. Acad. Sci. 104 (2007), 252–257.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, pp. 252-257
-
-
Akazawa, T.1
Ebihara, T.2
Okuno, M.3
Okuda, Y.4
Shingai, M.5
Tsujimura, K.6
-
39
-
-
33745083070
-
CD8+ T-cell memory in tumor immunology and immunotherapy
-
[39] Klebanoff, C.A., Gattinoni, L., Restifo, N.P., CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211 (2006), 214–224.
-
(2006)
Immunol. Rev.
, vol.211
, pp. 214-224
-
-
Klebanoff, C.A.1
Gattinoni, L.2
Restifo, N.P.3
-
40
-
-
84865416734
-
Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo
-
[40] Lee, I.H., Kwon, H.K., An, S., Kim, D., Kim, S., Yu, M.K., et al. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. Int. Ed. 51 (2012), 8800–8805.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 8800-8805
-
-
Lee, I.H.1
Kwon, H.K.2
An, S.3
Kim, D.4
Kim, S.5
Yu, M.K.6
-
41
-
-
84890587702
-
Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy
-
[41] Liu, H., Kwong, B., Irvine, D.J., Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew. Chem. Int. Ed. 123 (2011), 7190–7193.
-
(2011)
Angew. Chem. Int. Ed.
, vol.123
, pp. 7190-7193
-
-
Liu, H.1
Kwong, B.2
Irvine, D.J.3
|