메뉴 건너뛰기




Volumn 60, Issue , 2017, Pages 242-243

A 28nm SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine with >0.1 timing error rate tolerance for IoT applications

Author keywords

[No Author keywords available]

Indexed keywords

DEEP NEURAL NETWORKS; ENERGY EFFICIENCY; ERROR CORRECTION; ERRORS; LEARNING SYSTEMS; NEURAL NETWORKS; SYSTEM-ON-CHIP; TIMING CIRCUITS;

EID: 85016314952     PISSN: 01936530     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISSCC.2017.7870351     Document Type: Conference Paper
Times cited : (192)

References (5)
  • 1
    • 77952231026 scopus 로고    scopus 로고
    • A power-efficient 32b ARM ISA processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation
    • D. Bull, et al., "A Power-Efficient 32b ARM ISA Processor Using Timing-Error Detection and Correction for Transient-Error Tolerance and Adaptation to PVT variation", ISSCC, pp. 284-285, 2010.
    • (2010) ISSCC , pp. 284-285
    • Bull, D.1
  • 2
    • 84876579571 scopus 로고    scopus 로고
    • A low-power 1GHz razor FIR accelerator with time-borrow tracking pipeline and approximate error correction in 65nm CMOS
    • P. N. Whatmough, et al., "A Low-Power 1GHz Razor FIR Accelerator with Time-Borrow Tracking Pipeline and Approximate Error Correction in 65nm CMOS", ISSCC, pp. 428-429, 2013.
    • (2013) ISSCC , pp. 428-429
    • Whatmough, P.N.1
  • 3
    • 84962860246 scopus 로고    scopus 로고
    • Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
    • Feb.
    • Y. Chen, et al., "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks", ISSCC, pp. 262-263, Feb. 2016.
    • (2016) ISSCC , pp. 262-263
    • Chen, Y.1
  • 4
    • 84957887648 scopus 로고    scopus 로고
    • A 640M pixel/s 3.65mW sparse event-driven neuromorphic object recognition processor with on-chip learning
    • J. Kim, et al., "A 640M Pixel/s 3.65mW Sparse Event-Driven Neuromorphic Object Recognition Processor with On-Chip Learning", IEEE Symp. VLSI Circuits, 2015.
    • (2015) IEEE Symp. VLSI Circuits
    • Kim, J.1
  • 5
    • 84988349874 scopus 로고    scopus 로고
    • Minerva: Enabling low-power, highly-accurate deep neural network accelerators
    • B. Reagen, et al., "Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators", ACM/IEEE Int. Symp. Computer Arch., pp. 267-278, 2016.
    • (2016) ACM/IEEE Int. Symp. Computer Arch. , pp. 267-278
    • Reagen, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.