-
1
-
-
84981215216
-
The prediction students’ academic performance using classification data mining techniques
-
Ahmad, F., Ismail, N.H., Aziz, A.A., The prediction students’ academic performance using classification data mining techniques. Applied Mathematical Sciences 9 (2015), 6415–6426, 10.12988/ams.2015.53289.
-
(2015)
Applied Mathematical Sciences
, vol.9
, pp. 6415-6426
-
-
Ahmad, F.1
Ismail, N.H.2
Aziz, A.A.3
-
2
-
-
84992182700
-
A method to improve student's performance
-
Arora, Y., Singhal, A., Bansal, A., A method to improve student's performance. SIGSOFT Software Engineering Notes 39 (2014), 1–5, 10.1145/2557833.2557842.
-
(2014)
SIGSOFT Software Engineering Notes
, vol.39
, pp. 1-5
-
-
Arora, Y.1
Singhal, A.2
Bansal, A.3
-
3
-
-
85084013183
-
Predicting drop-out from social behaviour of students
-
(Greece)
-
Bayer, J., Bydzovska, H., Geryk, J., Obsivac, T., Popelinsky, L., Predicting drop-out from social behaviour of students. Proceedings of the 5th international conference on educational data mining - EDM 2012, 2012, 103–109 (Greece).
-
(2012)
Proceedings of the 5th international conference on educational data mining - EDM 2012
, pp. 103-109
-
-
Bayer, J.1
Bydzovska, H.2
Geryk, J.3
Obsivac, T.4
Popelinsky, L.5
-
4
-
-
62649157467
-
-
SIGCSE Bull
-
Bennedsen, J., Caspersen, M.E., Failure rates in introductory pro- gramming, 39, 2007, SIGCSE Bull, 32–36, 10.1145/1272848.1272879.
-
(2007)
Failure rates in introductory pro- gramming
, vol.39
, pp. 32-36
-
-
Bennedsen, J.1
Caspersen, M.E.2
-
5
-
-
0003802343
-
Classification and regression trees
-
Wadsworth and Brooks Monterey, CA
-
Breiman, L., Friedman, J., Olshen, R., Stone, C., Classification and regression trees. 1984, Wadsworth and Brooks, Monterey, CA.
-
(1984)
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
6
-
-
85072284885
-
A comparative analysis of techniques for predicting stu- dent performance
-
International Educational Data Mining Society
-
Bydzovska, H., A comparative analysis of techniques for predicting stu- dent performance. 2016, International Educational Data Mining Society, 306–311.
-
(2016)
, pp. 306-311
-
-
Bydzovska, H.1
-
7
-
-
34250744208
-
An empirical comparison of supervised learning algorithms
-
ACM New York, NY, USA
-
Caruana, R., Niculescu-Mizil, A., An empirical comparison of supervised learning algorithms. Proceedings of the 23rd international conference on machine learning ICML ‘06, 2006, ACM, New York, NY, USA, 161–168, 10.1145/1143844.1143865.
-
(2006)
Proceedings of the 23rd international conference on machine learning ICML ‘06
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
8
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res. 16 (2002), 321–357 http://dl.acm.org/citation.cfm?id=1622407.1622416.
-
(2002)
J. Artif. Int. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
9
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V., Support-vector networks. Machine Learning 20 (1995), 273–297, 10.1023/A:1022627411411.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
33744976067
-
The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing
-
Crone, S.F., Lessmann, S., Stahlbock, R., The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing. European Journal of Operational Research 173 (2006), 781–800, 10.1016/j.ejor.2005.07.023 http://www.sciencedirect.com/science/article/pii/S0377221705006739.
-
(2006)
European Journal of Operational Research
, vol.173
, pp. 781-800
-
-
Crone, S.F.1
Lessmann, S.2
Stahlbock, R.3
-
11
-
-
0031269184
-
On the optimality of the simple bayesian classifier under zero-one loss
-
Domingos, P., Pazzani, M., On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29 (1997), 103–130, 10.1023/A: 1007413511361.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
12
-
-
84919831940
-
Identifying at-risk students using machine learning techniques: A case study with is 100
-
IACSIT Press Singapore
-
Er, E., Identifying at-risk students using machine learning techniques: A case study with is 100. International journal of machine learning and computing, 2012, IACSIT Press, Singapore, 476–481, 10.1145/2554850.2555135.
-
(2012)
International journal of machine learning and computing
, pp. 476-481
-
-
Er, E.1
-
13
-
-
62949168242
-
Data mining on imbalanced data sets
-
Gu, Q., Cai, Z., Zhu, L., Huang, B., Data mining on imbalanced data sets. Advanced computer theory and engineering, 2008. ICACTE ‘08. International conference on, 2008, 1020–1024, 10.1109/ICACTE.2008.26.
-
(2008)
Advanced computer theory and engineering, 2008. ICACTE ‘08. International conference on
, pp. 1020-1024
-
-
Gu, Q.1
Cai, Z.2
Zhu, L.3
Huang, B.4
-
14
-
-
84868601726
-
Fine-tuning algorithm parameters using the design of experiments approach
-
C. Coello Springer Berlin Heidelberg volume 6683 of Lecture Notes in Computer Science
-
Gunawan, A., Lau, H., Lindawati, Fine-tuning algorithm parameters using the design of experiments approach. Coello, C., (eds.) Learning and intelligent optimization, 2011, Springer Berlin Heidelberg volume 6683 of Lecture Notes in Computer Science, 278–292, 10.1007/978-3-642-25566-3_21.
-
(2011)
Learning and intelligent optimization
, pp. 278-292
-
-
Gunawan, A.1
Lau, H.2
Lindawati3
-
15
-
-
84990941766
-
Data Mining: Concepts and techniques
-
3rd ed. Morgan Kaufmann Publishers Inc San Francisco, CA, USA
-
Han, J., Kamber, M., Pei, J., Data Mining: Concepts and techniques. 3rd ed., 2011, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA.
-
(2011)
-
-
Han, J.1
Kamber, M.2
Pei, J.3
-
16
-
-
10044267752
-
-
SIGCSE Bull
-
Hanks, B., McDowell, C., Draper, D., Krnjajic, M., Program quality with pair programming in cs1, 36, 2004, SIGCSE Bull, 176–180, 10.1145/1026487.1008043.
-
(2004)
Program quality with pair programming in cs1
, vol.36
, pp. 176-180
-
-
Hanks, B.1
McDowell, C.2
Draper, D.3
Krnjajic, M.4
-
17
-
-
0141796637
-
Db-hreduction: A data preprocessing algorithm for data mining applications
-
Hu, X., Db-hreduction: A data preprocessing algorithm for data mining applications. Applied Mathematics Letters 16 (2003), 889–895, 10.1016/S0893-9659(03)90013-9 http://www.sciencedirect.com/science/article/pii/S0893965903900139.
-
(2003)
Applied Mathematics Letters
, vol.16
, pp. 889-895
-
-
Hu, X.1
-
18
-
-
73649115991
-
Paramils: An automatic algorithm configuration framework
-
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T., Paramils: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36 (2009), 267–306 http://dl.acm.org/citation.cfm?id=1734953.1734959.
-
(2009)
Journal of Artificial Intelligence Research
, vol.36
, pp. 267-306
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
Stützle, T.4
-
19
-
-
84893278869
-
Detection and assistance to students who show frustration in learning of algorithms
-
Iepsen, E., Bercht, M., Reategui, E., Detection and assistance to students who show frustration in learning of algorithms. Frontiers in Ed- ucation conference, 2013 IEEE, 2013, 1183–1189, 10.1109/FIE. 2013. 6685017.
-
(2013)
Frontiers in Ed- ucation conference, 2013 IEEE
, pp. 1183-1189
-
-
Iepsen, E.1
Bercht, M.2
Reategui, E.3
-
20
-
-
10044295837
-
A stochastic optimization approach for pa- rameter tuning of support vector machines
-
Imbault, F., Lebart, K., A stochastic optimization approach for pa- rameter tuning of support vector machines. In pattern recognition, 2004. ICPR 2004. Proceedings of the 17th international conference on, Vol. 4, 2004, 597–600, 10.1109/ICPR.2004.1333843.
-
(2004)
In pattern recognition, 2004. ICPR 2004. Proceedings of the 17th international conference on
, vol.4
, pp. 597-600
-
-
Imbault, F.1
Lebart, K.2
-
21
-
-
0000468432
-
Estimating continuous distributions in bayesian classifiers
-
Morgan Kaufmann Publishers Inc San Francisco, CA, USA
-
John, G.H., Langley, P., Estimating continuous distributions in bayesian classifiers. Proceedings of the eleventh conference on uncertainty in artificial intelligence UAI’95, 1995, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 338–345 http://dl.acm.org/citation.cfm?id=2074158.2074196.
-
(1995)
Proceedings of the eleventh conference on uncertainty in artificial intelligence UAI’95
, pp. 338-345
-
-
John, G.H.1
Langley, P.2
-
23
-
-
84905659674
-
Wave: An architecture for predicting dropout in undergraduate courses using edm
-
ACM. URL New York, NY, USA
-
Manhães, L.M.B., da Cruz, S.M.S., Zimbrão, G., Wave: An architecture for predicting dropout in undergraduate courses using edm. Proceedings of the 29th annual ACM symposium on applied computing SAC ‘14, 2014, ACM. URL, New York, NY, USA, 243–247, 10.1145/2554850.2555135.
-
(2014)
Proceedings of the 29th annual ACM symposium on applied computing SAC ‘14
, pp. 243-247
-
-
Manhães, L.M.B.1
da Cruz, S.M.S.2
Zimbrão, G.3
-
24
-
-
84892648313
-
Predicting school failure and dropout by using data mining techniques
-
Marquez-Vera, C., Morales, C., Soto, S., Predicting school failure and dropout by using data mining techniques. Tecnologias del Aprendizaje IEEE Revista Iberoamericana de 8 (2013), 7–14, 10.1109/RITA.2013.2244695.
-
(2013)
Tecnologias del Aprendizaje IEEE Revista Iberoamericana de
, vol.8
, pp. 7-14
-
-
Marquez-Vera, C.1
Morales, C.2
Soto, S.3
-
25
-
-
84892496898
-
Prediction of school dropout risk group using neural network
-
Martinho, V., Nunes, C., Minussi, C., Prediction of school dropout risk group using neural network. Computer science and information systems (FedCSIS), 2013 federated conference on, 2013, 111–114.
-
(2013)
Computer science and information systems (FedCSIS), 2013 federated conference on
, pp. 111-114
-
-
Martinho, V.1
Nunes, C.2
Minussi, C.3
-
26
-
-
27844588525
-
-
Oxford University Press, Inc New York, NY, USA
-
Nürnberger, A., Pedrycz, W., Kruse, R., Handbook of data mining and knowledge discovery. Chapter data mining tasks and Methods: Classi- fication: Neural network approaches, 2002, Oxford University Press, Inc, New York, NY, USA, 304–317 http://dl.acm.org/citation.cfm?id= 778212.778259.
-
(2002)
Handbook of data mining and knowledge discovery. Chapter data mining tasks and Methods: Classi- fication: Neural network approaches
, pp. 304-317
-
-
Nürnberger, A.1
Pedrycz, W.2
Kruse, R.3
-
27
-
-
84885708772
-
Advanced data mining techniques
-
1st ed. Springer Publishing Company, Incorporated
-
Olson, D.L., Delen, D., Advanced data mining techniques. 1st ed., 2008, Springer Publishing Company, Incorporated.
-
(2008)
-
-
Olson, D.L.1
Delen, D.2
-
28
-
-
84891083987
-
Pentaho - Pentaho data integration
-
Accessed January 2015
-
Pentaho, Pentaho - Pentaho data integration. 2015 http://www.pentaho.com/ Accessed January 2015.
-
(2015)
-
-
Pentaho1
-
29
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J.R., Induction of decision trees. Machine Learning 1 (1986), 81–106, 10.1023/A: 1022643204877.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
30
-
-
0004140522
-
Neurocomput- ing: Foundations of research
-
MIT Press Cambridge, MA, USA
-
Rumelhart, D.E., Hinton, G.E., Williams, R.J., Neurocomput- ing: Foundations of research. Chapter learning representations by back- propagating errors, 1988, MIT Press, Cambridge, MA, USA, 696–699 http://dl.acm.org/citation.cfm?id=65669.104451.
-
(1988)
Chapter learning representations by back- propagating errors
, pp. 696-699
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
31
-
-
8344282137
-
C4.5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993
-
Salzberg, S., C4.5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993. Machine Learning 16 (1994), 235–240, 10.1007/BF00993309.
-
(1994)
Machine Learning
, vol.16
, pp. 235-240
-
-
Salzberg, S.1
-
32
-
-
84869143045
-
Predictors of success in a first programming course
-
Australian Computer Society, Inc. Darlinghurst, Australia, Australia
-
Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., et al. Predictors of success in a first programming course. Proceedings of the 8th Australasian conference on computing education - volume 52 ACE ‘06, 2006, Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 189–196 http://dl.acm.org/citation.cfm?id=1151869.1151894.
-
(2006)
Proceedings of the 8th Australasian conference on computing education - volume 52 ACE ‘06
, pp. 189-196
-
-
Simon1
Fincher, S.2
Robins, A.3
Baker, B.4
Box, I.5
Cutts, Q.6
-
33
-
-
77951132621
-
Learning difficulties in program- ming courses: Undergraduates’ perspective and perception
-
Tan, P.-H., Ting, C.-Y., Ling, S.-W., Learning difficulties in program- ming courses: Undergraduates’ perspective and perception. Computer technology and development, 2009. ICCTD ‘09. International conference on, Vol. 1, 2009, 42–46, 10.1109/ICCTD.2009.188.
-
(2009)
Computer technology and development, 2009. ICCTD ‘09. International conference on
, vol.1
, pp. 42-46
-
-
Tan, P.-H.1
Ting, C.-Y.2
Ling, S.-W.3
-
34
-
-
0003450542
-
The nature of statistical learning theory
-
Springer-Verlag New York, Inc New York, NY, USA
-
Vapnik, V.N., The nature of statistical learning theory. 1995, Springer-Verlag New York, Inc, New York, NY, USA.
-
(1995)
-
-
Vapnik, V.N.1
-
35
-
-
38149120678
-
Svm with stochas- tic parameter selection for bovine leather defect classification
-
D. Mery L. Rueda Springer Berlin Heidelberg volume 4872 of Lecture Notes in Computer Science
-
Viana, R., Rodrigues, R., Alvarez, M., Pistori, H., Svm with stochas- tic parameter selection for bovine leather defect classification. Mery, D., Rueda, L., (eds.) Advances in image and video technology, 2007, Springer Berlin Heidelberg volume 4872 of Lecture Notes in Computer Science, 600–612.
-
(2007)
Advances in image and video technology
, pp. 600-612
-
-
Viana, R.1
Rodrigues, R.2
Alvarez, M.3
Pistori, H.4
-
36
-
-
84904502429
-
Failure rates in introductory programming revisited
-
ACM. URL New York, NY, USA
-
Watson, C., Li, F.W., Failure rates in introductory programming revisited. Proceedings of the 2014 conference on innovation & tech- nology in computer science education ITiCSE ‘14, 2014, ACM. URL, New York, NY, USA, 39–44, 10.1145/2591708.2591749.
-
(2014)
Proceedings of the 2014 conference on innovation & tech- nology in computer science education ITiCSE ‘14
, pp. 39-44
-
-
Watson, C.1
Li, F.W.2
-
37
-
-
84885229296
-
Predicting performance in an introductory programming course by logging and analyzing student programming behavior
-
Watson, C., Li, F., Godwin, J., Predicting performance in an introductory programming course by logging and analyzing student programming behavior. Advanced learning Technologies (ICALT), 2013 IEEE 13th international conference on, 2013, 319–323, 10.1109/ICALT.2013.99.
-
(2013)
Advanced learning Technologies (ICALT), 2013 IEEE 13th international conference on
, pp. 319-323
-
-
Watson, C.1
Li, F.2
Godwin, J.3
-
38
-
-
85016261753
-
-
Weka - the University of Waikato, Accessed January 2015.
-
Weka (2015), Weka - the University of Waikato, http://www.cs.waikato.ac.nz/ml/weka/, Accessed January 2015.
-
(2015)
-
-
-
39
-
-
84991833843
-
Data Mining: Practical machine learning tools and techniques
-
3rd ed. Morgan Kaufmann Publishers Inc San Francisco, CA, USA
-
Witten, I.H., Frank, E., Hall, M.A., Data Mining: Practical machine learning tools and techniques. 3rd ed., 2011, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA.
-
(2011)
-
-
Witten, I.H.1
Frank, E.2
Hall, M.A.3
-
40
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., et al. Top 10 algorithms in data mining. Knowledge and Information Systems 14 (2008), 1–37, 10.1007/s10115-007-0114-2.
-
(2008)
Knowledge and Information Systems
, vol.14
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Ross Quinlan, J.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
-
41
-
-
84904756642
-
Predicting dropout student: An application of data mining methods in an online education program
-
Yukselturk, E., Ozekes, S., Turel, Y.K., Predicting dropout student: An application of data mining methods in an online education program. Eu- ropean Journal of Open, Distance and eLearning 17 (2014), 1027–5207.
-
(2014)
Eu- ropean Journal of Open, Distance and eLearning
, vol.17
, pp. 1027-5207
-
-
Yukselturk, E.1
Ozekes, S.2
Turel, Y.K.3
-
42
-
-
84901213265
-
Data mining and Analysis: Fundamental concepts and algorithms
-
Cambridge University Press New York, NY, USA
-
Zaki, M.J., W.M. Jr., Data mining and Analysis: Fundamental concepts and algorithms. 2014, Cambridge University Press, New York, NY, USA.
-
(2014)
-
-
Zaki, M.J.1
|