메뉴 건너뛰기




Volumn , Issue , 2017, Pages 662-666

Radio transformer networks: Attention models for learning to synchronize in wireless systems

Author keywords

Attention Models; Cognitive Radio; Con volutional Autoencoders; Deep Learning; Machine Learning; Neural Networks; Radio communications; Radio Transformer Networks; RadioML; Signal Processing; Software Radio; Spatial Transformer Networks; Synchronization

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP LEARNING; ELECTRIC TRANSFORMERS; LEARNING SYSTEMS; MODULATION; NEURAL NETWORKS; RADIO COMMUNICATION; SIGNAL PROCESSING; SIGNAL TO NOISE RATIO; SOFTWARE RADIO; STRUCTURAL OPTIMIZATION; SYNCHRONIZATION;

EID: 85016274803     PISSN: 10586393     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ACSSC.2016.7869126     Document Type: Conference Paper
Times cited : (72)

References (9)
  • 1
    • 34548591004 scopus 로고    scopus 로고
    • Applications of machine learning to cognitive radio networks
    • C. Clancy, J. Hecker, E. Stuntebeck, and T. O'Shea, "Applications of machine learning to cognitive radio networks", Wireless Communications, IEEE, vol. 14, no. 4, pp. 47-52, 2007.
    • (2007) Wireless Communications, IEEE , vol.14 , Issue.4 , pp. 47-52
    • Clancy, C.1    Hecker, J.2    Stuntebeck, E.3    O'Shea, T.4
  • 7
    • 84971640658 scopus 로고    scopus 로고
    • F. Chollet, Keras, https: //github. com/fchollet/keras, 2015.
    • (2015) Keras
    • Chollet, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.