![]() |
Volumn , Issue , 2017, Pages 662-666
|
Radio transformer networks: Attention models for learning to synchronize in wireless systems
|
Author keywords
Attention Models; Cognitive Radio; Con volutional Autoencoders; Deep Learning; Machine Learning; Neural Networks; Radio communications; Radio Transformer Networks; RadioML; Signal Processing; Software Radio; Spatial Transformer Networks; Synchronization
|
Indexed keywords
ARTIFICIAL INTELLIGENCE;
DEEP LEARNING;
ELECTRIC TRANSFORMERS;
LEARNING SYSTEMS;
MODULATION;
NEURAL NETWORKS;
RADIO COMMUNICATION;
SIGNAL PROCESSING;
SIGNAL TO NOISE RATIO;
SOFTWARE RADIO;
STRUCTURAL OPTIMIZATION;
SYNCHRONIZATION;
ATTENTION MODEL;
AUTOENCODERS;
CLASSIFICATION ACCURACY;
IDENTICAL SYSTEMS;
MODULATION RECOGNITION;
RADIOML;
SPARSE REPRESENTATION;
WIRELESS SYSTEMS;
COGNITIVE RADIO;
|
EID: 85016274803
PISSN: 10586393
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/ACSSC.2016.7869126 Document Type: Conference Paper |
Times cited : (72)
|
References (9)
|