-
1
-
-
79952822608
-
A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma
-
Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, Heyworth PG, Efron PA, Moldawer LL. 2011. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17:281-292. https://doi.org/10.1007/s00894-010-0723-7.
-
(2011)
Mol Med
, vol.17
, pp. 281-292
-
-
Cuenca, A.G.1
Delano, M.J.2
Kelly-Scumpia, K.M.3
Moreno, C.4
Scumpia, P.O.5
Laface, D.M.6
Heyworth, P.G.7
Efron, P.A.8
Moldawer, L.L.9
-
2
-
-
61349100687
-
Myeloid-derived suppressor cells as regulators of the immune system
-
Gabrilovich DI, Nagaraj S. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162-174. https://doi.org/10.1038/nri2506.
-
(2009)
Nat Rev Immunol
, vol.9
, pp. 162-174
-
-
Gabrilovich, D.I.1
Nagaraj, S.2
-
3
-
-
65249138393
-
Myeloid-derived suppressor cells: linking inflammation and cancer
-
Ostrand-Rosenberg S, Sinha P. 2009. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499-4506. https://doi.org/10.4049/jimmunol.0802740.
-
(2009)
J Immunol
, vol.182
, pp. 4499-4506
-
-
Ostrand-Rosenberg, S.1
Sinha, P.2
-
4
-
-
80053613350
-
Myeloid derived suppressor cells in transplantation
-
Lees JR, Azimzadeh AM, Bromberg JS. 2011. Myeloid derived suppressor cells in transplantation. Curr Opin Immunol 23:692-697. https://doi.org/10.1016/j.coi.2011.07.004.
-
(2011)
Curr Opin Immunol
, vol.23
, pp. 692-697
-
-
Lees, J.R.1
Azimzadeh, A.M.2
Bromberg, J.S.3
-
5
-
-
84879637291
-
Reciprocal relationship between myeloid-derived suppressor cells and T cells
-
Nagaraj S, Youn JI, Gabrilovich DI. 2013. Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol 191:17-23. https://doi.org/10.4049/jimmunol.1300654.
-
(2013)
J Immunol
, vol.191
, pp. 17-23
-
-
Nagaraj, S.1
Youn, J.I.2
Gabrilovich, D.I.3
-
6
-
-
77955549860
-
Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity
-
Ostrand-Rosenberg S. 2010. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593-1600. https://doi.org/10.1007/s00262-010-0855-8.
-
(2010)
Cancer Immunol Immunother
, vol.59
, pp. 1593-1600
-
-
Ostrand-Rosenberg, S.1
-
7
-
-
84987850874
-
Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome
-
Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, Moore FA, Moldawer LL. 2017. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med 45:253-262. https://doi.org/10.1097/CCM.0000000000002074.
-
(2017)
Crit Care Med
, vol.45
, pp. 253-262
-
-
Mira, J.C.1
Gentile, L.F.2
Mathias, B.J.3
Efron, P.A.4
Brakenridge, S.C.5
Mohr, A.M.6
Moore, F.A.7
Moldawer, L.L.8
-
8
-
-
84877949379
-
Myeloid derived suppressor cells and their role in diseases
-
Kong YY, Fuchsberger M, Xiang SD, Apostolopoulos V, Plebanski M. 2013 Myeloid derived suppressor cells and their role in diseases. Curr Med Chem 20:1437-1444. https://doi.org/10.2174/0929867311 320110006.
-
(2013)
Curr Med Chem
, vol.20
, pp. 1437-1444
-
-
Kong, Y.Y.1
Fuchsberger, M.2
Xiang, S.D.3
Apostolopoulos, V.4
Plebanski, M.5
-
9
-
-
78650756969
-
Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function
-
Condamine T, Gabrilovich DI. 2011. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32:19-25. https://doi.org/10.1016/j.it.2010.10.002.
-
(2011)
Trends Immunol
, vol.32
, pp. 19-25
-
-
Condamine, T.1
Gabrilovich, D.I.2
-
10
-
-
0042591427
-
All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination
-
Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D. 2003. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63:4441-4449.
-
(2003)
Cancer Res
, vol.63
, pp. 4441-4449
-
-
Kusmartsev, S.1
Cheng, F.2
Yu, B.3
Nefedova, Y.4
Sotomayor, E.5
Lush, R.6
Gabrilovich, D.7
-
11
-
-
84874256945
-
Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach
-
Hotchkiss RS, Monneret G, Payen D. 2013. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13:260-268. https://doi.org/10.1016/S1473-3099 (13)70001-X.
-
(2013)
Lancet Infect Dis
, vol.13
, pp. 260-268
-
-
Hotchkiss, R.S.1
Monneret, G.2
Payen, D.3
-
12
-
-
84926086734
-
Anti-inflammatory mechanisms of sepsis
-
Shubin NJ, Monaghan SF, Ayala A. 2011. Anti-inflammatory mechanisms of sepsis. Contrib Microbiol 17:108-124. https://doi.org/10.1159/000 324024.
-
(2011)
Contrib Microbiol
, vol.17
, pp. 108-124
-
-
Shubin, N.J.1
Monaghan, S.F.2
Ayala, A.3
-
13
-
-
84888325490
-
Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy
-
Hotchkiss RS, Monneret G, Payen D. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862-874. https://doi.org/10.1038/nri3552.
-
(2013)
Nat Rev Immunol
, vol.13
, pp. 862-874
-
-
Hotchkiss, R.S.1
Monneret, G.2
Payen, D.3
-
14
-
-
84857165509
-
Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis
-
Brudecki L, Ferguson DA, Yin D, Lesage GD, McCall CE, El Gazzar M. 2012. Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infect Immun 80:602-611. https://doi.org/10.1128/IAI.05480-11.
-
(2012)
Infect Immun
, vol.80
, pp. 602-611
-
-
Brudecki, L.1
Ferguson, D.A.2
Yin, D.3
Lesage, G.D.4
McCall, C.E.5
El Gazzar, M.6
-
15
-
-
85047689277
-
Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response
-
Brudecki L, Ferguson DA, McCall CE, El Gazzar M. 2012. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect Immun 80:2026-2034. https://doi.org/10.1128/IAI.00239-12.
-
(2012)
Infect Immun
, vol.80
, pp. 2026-2034
-
-
Brudecki, L.1
Ferguson, D.A.2
McCall, C.E.3
El Gazzar, M.4
-
16
-
-
34250359119
-
MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis
-
Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O'Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL. 2007. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463-1474. https://doi.org/10.1084/jem.20062602.
-
(2007)
J Exp Med
, vol.204
, pp. 1463-1474
-
-
Delano, M.J.1
Scumpia, P.O.2
Weinstein, J.S.3
Coco, D.4
Nagaraj, S.5
Kelly-Scumpia, K.M.6
O'Malley, K.A.7
Wynn, J.L.8
Antonenko, S.9
Al-Quran, S.Z.10
Swan, R.11
Chung, C.S.12
Atkinson, M.A.13
Ramphal, R.14
Gabrilovich, D.I.15
Reeves, W.H.16
Ayala, A.17
Phillips, J.18
Laface, D.19
Heyworth, P.G.20
Clare-Salzler, M.21
Moldawer, L.L.22
more..
-
17
-
-
84906070150
-
MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis
-
McClure C, Brudecki L, Ferguson DA, Yao ZQ, Moorman JP, McCall CE, El Gazzar M. 2014. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun 82:3816-3825. https://doi.org/10.1128/IAI.01495-14.
-
(2014)
Infect Immun
, vol.82
, pp. 3816-3825
-
-
McClure, C.1
Brudecki, L.2
Ferguson, D.A.3
Yao, Z.Q.4
Moorman, J.P.5
McCall, C.E.6
El Gazzar, M.7
-
18
-
-
84953380005
-
NFI-A disrupts myeloid cell differentiation and maturation in septic mice
-
McClure C, Ali E, Youssef D, Yao ZQ, McCall CE, El Gazzar M. 2016. NFI-A disrupts myeloid cell differentiation and maturation in septic mice. J Leukoc Biol 99:201-211. https://doi.org/10.1189/jlb.4A0415-171RR.
-
(2016)
J Leukoc Biol
, vol.99
, pp. 201-211
-
-
McClure, C.1
Ali, E.2
Youssef, D.3
Yao, Z.Q.4
McCall, C.E.5
El Gazzar, M.6
-
19
-
-
28344438648
-
A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis
-
Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I. 2005 A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123: 819-831. https://doi.org/10.1016/j.cell.2005.09.023.
-
(2005)
Cell
, vol.123
, pp. 819-831
-
-
Fazi, F.1
Rosa, A.2
Fatica, A.3
Gelmetti, V.4
De Marchis, M.L.5
Nervi, C.6
Bozzoni, I.7
-
20
-
-
38049146022
-
The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation
-
Rosa A, Ballarino M, Sorrentino A, Sthandier O, De Angelis FG, Marchioni M, Masella B, Guarini A, Fatica A, Peschle C, Bozzoni I. 2007. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci U S A 104:19849-19854. https://doi.org/10.1073/pnas.0706963104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19849-19854
-
-
Rosa, A.1
Ballarino, M.2
Sorrentino, A.3
Sthandier, O.4
De Angelis, F.G.5
Marchioni, M.6
Masella, B.7
Guarini, A.8
Fatica, A.9
Peschle, C.10
Bozzoni, I.11
-
21
-
-
84860319206
-
Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression
-
Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, Mancini M, Nanni M, Cimino G, Lo-Coco F, Grignani F, Nervi C. 2012. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 119:4034-4046. https://doi.org/10.1182/blood-2011-08-371344.
-
(2012)
Blood
, vol.119
, pp. 4034-4046
-
-
Zardo, G.1
Ciolfi, A.2
Vian, L.3
Starnes, L.M.4
Billi, M.5
Racanicchi, S.6
Maresca, C.7
Fazi, F.8
Travaglini, L.9
Noguera, N.10
Mancini, M.11
Nanni, M.12
Cimino, G.13
Lo-Coco, F.14
Grignani, F.15
Nervi, C.16
-
22
-
-
0032692783
-
Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum
-
das Neves L, Duchala CS, Tolentino-Silva F, Haxhiu MA, Colmenares C, Macklin WB, Campbell CE, Butz KG, Gronostajski RM. 1999. Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci U S A 96:11946-11951. https://doi.org/10.1073/pnas.96.21.11946.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 11946-11951
-
-
das Neves, L.1
Duchala, C.S.2
Tolentino-Silva, F.3
Haxhiu, M.A.4
Colmenares, C.5
Macklin, W.B.6
Campbell, C.E.7
Butz, K.G.8
Gronostajski, R.M.9
-
23
-
-
0032102990
-
Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype
-
Munder M, Eichmann K, Modolell M. 1998. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347-5354.
-
(1998)
J Immunol
, vol.160
, pp. 5347-5354
-
-
Munder, M.1
Eichmann, K.2
Modolell, M.3
-
24
-
-
0031755096
-
Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo
-
Williams MA, Withington S, Newland AC, Kelsey SM. 1998. Monocyte anergy in septic shock is associated with a predilection to apoptosis and is reversed by granulocyte-macrophage colony-stimulating factor ex vivo. J Infect Dis 178:1421-1433. https://doi.org/10.1086/314447.
-
(1998)
J Infect Dis
, vol.178
, pp. 1421-1433
-
-
Williams, M.A.1
Withington, S.2
Newland, A.C.3
Kelsey, S.M.4
-
25
-
-
84877812871
-
Pre-treatment with low-dose endotoxin prolongs survival from experimental lethal endotoxic shock: benefit for lethal peritonitis by Escherichia coli
-
Kopanakis K, Tzepi IM, Pistiki A, Carrer DP, Netea MG, Georgitsi M, Lymperi M, Droggiti DI, Liakakos T, Machairas A, Giamarellos-Bourboulis EJ. 2013. Pre-treatment with low-dose endotoxin prolongs survival from experimental lethal endotoxic shock: benefit for lethal peritonitis by Escherichia coli. Cytokine 62:382-388. https://doi.org/10.1016/j.cyto.2013.03.028.
-
(2013)
Cytokine
, vol.62
, pp. 382-388
-
-
Kopanakis, K.1
Tzepi, I.M.2
Pistiki, A.3
Carrer, D.P.4
Netea, M.G.5
Georgitsi, M.6
Lymperi, M.7
Droggiti, D.I.8
Liakakos, T.9
Machairas, A.10
Giamarellos-Bourboulis, E.J.11
-
26
-
-
84870487654
-
Adoptive transfer of CD34(+) cells during murine sepsis rebalances macrophage lipopolysaccharide responses
-
Brudecki L, Ferguson DA, McCall CE, El Gazzar M. 2012. Adoptive transfer of CD34(+) cells during murine sepsis rebalances macrophage lipopolysaccharide responses. Immunol Cell Biol 90:925-934. https://doi.org/10.1038/icb.2012.32.
-
(2012)
Immunol Cell Biol
, vol.90
, pp. 925-934
-
-
Brudecki, L.1
Ferguson, D.A.2
McCall, C.E.3
El Gazzar, M.4
-
27
-
-
0034132796
-
Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture
-
Remick DG, Newcomb DE, Bolgos GL, Call DR. 2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13:110-116. https://doi.org/10.1097/00024382-200013020-00004.
-
(2000)
Shock
, vol.13
, pp. 110-116
-
-
Remick, D.G.1
Newcomb, D.E.2
Bolgos, G.L.3
Call, D.R.4
-
28
-
-
0028220204
-
p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest
-
Dulić V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013-1023. https://doi.org/10.1016/0092-8674(94)90379-4.
-
(1994)
Cell
, vol.76
, pp. 1013-1023
-
-
Dulić, V.1
Kaufmann, W.K.2
Wilson, S.J.3
Tlsty, T.D.4
Lees, E.5
Harper, J.W.6
Elledge, S.J.7
Reed, S.I.8
-
30
-
-
0034629129
-
Hematopoietic stem cell quiescence maintained by p21cip1/waf1
-
Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT. 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804-1808. https://doi.org/10.1126/science.287.5459.1804.
-
(2000)
Science
, vol.287
, pp. 1804-1808
-
-
Cheng, T.1
Rodrigues, N.2
Shen, H.3
Yang, Y.4
Dombkowski, D.5
Sykes, M.6
Scadden, D.T.7
-
31
-
-
79959362128
-
NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies
-
Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM, Baltimore D. 2011 NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A 108:9184-9189. https://doi.org/10.1073/pnas.1105398108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 9184-9189
-
-
Zhao, J.L.1
Rao, D.S.2
Boldin, M.P.3
Taganov, K.D.4
O'Connell, R.M.5
Baltimore, D.6
-
32
-
-
78649598159
-
Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells
-
Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S. 2010. Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells. J Leukoc Biol 88:839-848. https://doi.org/10.1189/jlb.1209821.
-
(2010)
J Leukoc Biol
, vol.88
, pp. 839-848
-
-
Eruslanov, E.1
Daurkin, I.2
Ortiz, J.3
Vieweg, J.4
Kusmartsev, S.5
-
33
-
-
84255194001
-
Immunosuppression in patients who die of sepsis and multiple organ failure
-
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594-2605. https://doi.org/10.1001/jama.2011.1829.
-
(2011)
JAMA
, vol.306
, pp. 2594-2605
-
-
Boomer, J.S.1
To, K.2
Chang, K.C.3
Takasu, O.4
Osborne, D.F.5
Walton, A.H.6
Bricker, T.L.7
Jarman, S.D.8
Kreisel, D.9
Krupnick, A.S.10
Srivastava, A.11
Swanson, P.E.12
Green, J.M.13
Hotchkiss, R.S.14
-
34
-
-
0034551670
-
Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells
-
Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P. 2000. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838-3846.
-
(2000)
Blood
, vol.96
, pp. 3838-3846
-
-
Bronte, V.1
Apolloni, E.2
Cabrelle, A.3
Ronca, R.4
Serafini, P.5
Zamboni, P.6
Restifo, N.P.7
Zanovello, P.8
-
35
-
-
13544277688
-
Effect of thermal injury on splenic myelopoiesis
-
Noel JG, Guo X, Wells-Byrum D, Schwemberger S, Caldwell CC, Ogle CK. 2005 Effect of thermal injury on splenic myelopoiesis. Shock 23: 115-122. https://doi.org/10.1097/01.shk.0000154239.00887.18.
-
(2005)
Shock
, vol.23
, pp. 115-122
-
-
Noel, J.G.1
Guo, X.2
Wells-Byrum, D.3
Schwemberger, S.4
Caldwell, C.C.5
Ogle, C.K.6
-
36
-
-
84966339558
-
Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock
-
Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM, Moore FA, Brakenridge SC, Brumback BA, Moldawer LL, Efron PA; and the Sepsis, Critical Illness Research Center Investigators. 9 May 2016. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg https://doi.org/10.1097/SLA.0000000000001783.
-
(2016)
Ann Surg
-
-
Mathias, B.1
Delmas, A.L.2
Ozrazgat-Baslanti, T.3
Vanzant, E.L.4
Szpila, B.E.5
Mohr, A.M.6
Moore, F.A.7
Brakenridge, S.C.8
Brumback, B.A.9
Moldawer, L.L.10
Efron, P.A.11
-
37
-
-
84897378109
-
The new normal: immunomodulatory agents against sepsis immune suppression
-
Hutchins NA, Unsinger J, Hotchkiss RS, Ayala A. 2014. The new normal: immunomodulatory agents against sepsis immune suppression. Trends Mol Med 20:224-233. https://doi.org/10.1016/j.molmed.2014.01.002.
-
(2014)
Trends Mol Med
, vol.20
, pp. 224-233
-
-
Hutchins, N.A.1
Unsinger, J.2
Hotchkiss, R.S.3
Ayala, A.4
-
39
-
-
84908289124
-
A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases
-
Janols H, Bergenfelz C, Allaoui R, Larsson AM, Ryden L, Bjornsson S, Janciauskiene S, Wullt M, Bredberg A, Leandersson K. 2014. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J Leukoc Biol 96:685-693. https://doi.org/10.1189/jlb.5HI0214-074R.
-
(2014)
J Leukoc Biol
, vol.96
, pp. 685-693
-
-
Janols, H.1
Bergenfelz, C.2
Allaoui, R.3
Larsson, A.M.4
Ryden, L.5
Bjornsson, S.6
Janciauskiene, S.7
Wullt, M.8
Bredberg, A.9
Leandersson, K.10
-
40
-
-
0033177995
-
Conditional gene targeting in macrophages and granulocytes using LysMcre mice
-
Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I. 1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265-277. https://doi.org/10.1023/A:100894 2828960.
-
(1999)
Transgenic Res
, vol.8
, pp. 265-277
-
-
Clausen, B.E.1
Burkhardt, C.2
Reith, W.3
Renkawitz, R.4
Forster, I.5
-
41
-
-
0036763320
-
The Surgical Infection Society guidelines on antimicrobial therapy for intra-abdominal infections: an executive summary
-
Mazuski JE, Sawyer RG, Nathens AB, DiPiro JT, Schein M, Kudsk KA, Yowler C; Therapeutic Agents Committee of the Surgical Infections Society. 2002. The Surgical Infection Society guidelines on antimicrobial therapy for intra-abdominal infections: an executive summary. Surg Infect (Larchmt) 3:161-173. https://doi.org/10.1089/10962960276 1624171.
-
(2002)
Surg Infect (Larchmt)
, vol.3
, pp. 161-173
-
-
Mazuski, J.E.1
Sawyer, R.G.2
Nathens, A.B.3
DiPiro, J.T.4
Schein, M.5
Kudsk, K.A.6
Yowler, C.7
|