메뉴 건너뛰기




Volumn 70, Issue , 2017, Pages 52-57

Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible

Author keywords

Equilibrium; Global asymptotic stability; Lyapunov function; Nonlinear incidence rate; SIRS epidemic model

Indexed keywords

ASYMPTOTIC STABILITY; EPIDEMIOLOGY; LYAPUNOV FUNCTIONS; PHASE EQUILIBRIA;

EID: 85016085315     PISSN: 08939659     EISSN: 18735452     Source Type: Journal    
DOI: 10.1016/j.aml.2017.03.005     Document Type: Article
Times cited : (57)

References (18)
  • 1
    • 0000998185 scopus 로고
    • A contribution to the mathematical theory of epidemics
    • [1] Kermack, W.O., MCKendrick, A.G., A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115 (1927), 700–721.
    • (1927) Proc. R. Soc. Lond. Ser. A , vol.115 , pp. 700-721
    • Kermack, W.O.1    MCKendrick, A.G.2
  • 2
    • 0018041874 scopus 로고
    • A generalization of the Kermack–Mckendrick deterministic epidemic model
    • [2] Capasso, V., Serio, G., A generalization of the Kermack–Mckendrick deterministic epidemic model. Math. Biosci. 42 (1978), 43–61.
    • (1978) Math. Biosci. , vol.42 , pp. 43-61
    • Capasso, V.1    Serio, G.2
  • 3
    • 84969142744 scopus 로고    scopus 로고
    • A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence
    • [3] Li, J., Yang, Y., Xiao, Y., Liu, S., A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence. J. Appl. Anal. Comput. 6 (2016), 38–46.
    • (2016) J. Appl. Anal. Comput. , vol.6 , pp. 38-46
    • Li, J.1    Yang, Y.2    Xiao, Y.3    Liu, S.4
  • 5
    • 0026491804 scopus 로고
    • Dynamic models of infectious diseases as regulators of population size
    • [5] Mena-Lorca, J., Hethcote, H.W., Dynamic models of infectious diseases as regulators of population size. J. Math. Biol. 30 (1992), 693–716.
    • (1992) J. Math. Biol. , vol.30 , pp. 693-716
    • Mena-Lorca, J.1    Hethcote, H.W.2
  • 6
    • 0017228276 scopus 로고
    • Qualitative analysis of communicable disease models
    • [6] Hethcote, H.W., Qualitative analysis of communicable disease models. Math. Biosci. 28 (1976), 334–356.
    • (1976) Math. Biosci. , vol.28 , pp. 334-356
    • Hethcote, H.W.1
  • 7
    • 0036845274 scopus 로고    scopus 로고
    • Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
    • [7] van den Driessche, P., Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002), 29–48.
    • (2002) Math. Biosci. , vol.180 , pp. 29-48
    • van den Driessche, P.1    Watmough, J.2
  • 8
    • 78649989180 scopus 로고    scopus 로고
    • On the yapunov stability for SIRS epidemic models with general nonlinear incidence rate
    • [8] Buonomo, B., Rionero, S., On the yapunov stability for SIRS epidemic models with general nonlinear incidence rate. Appl. Math. Comput. 217 (2010), 4010–4016.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 4010-4016
    • Buonomo, B.1    Rionero, S.2
  • 9
    • 78651226178 scopus 로고    scopus 로고
    • Bifurcations of an SIRS epidemic model with nonlinear incidence rate
    • [9] Hu, Z., Bi, P., Ma, W., Ruan, S., Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete Contin. Dyn. Syst. 15 (2011), 93–112.
    • (2011) Discrete Contin. Dyn. Syst. , vol.15 , pp. 93-112
    • Hu, Z.1    Bi, P.2    Ma, W.3    Ruan, S.4
  • 10
    • 31244431623 scopus 로고    scopus 로고
    • Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models
    • [10] Korobeinikov, A., wake, G.C., Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15 (2002), 955–960.
    • (2002) Appl. Math. Lett. , vol.15 , pp. 955-960
    • Korobeinikov, A.1    wake, G.C.2
  • 11
    • 84885315493 scopus 로고    scopus 로고
    • Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates
    • [11] Muroya, Y., Li, H., Kuniya, T., Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates. J. Math. Anal. Appl. 410 (2014), 719–732.
    • (2014) J. Math. Anal. Appl. , vol.410 , pp. 719-732
    • Muroya, Y.1    Li, H.2    Kuniya, T.3
  • 13
    • 79952335417 scopus 로고    scopus 로고
    • Global dynamics of a deterministic and stochastic nonlinear SIRS epidemic model
    • [13] Lahrouz, A., Omari, L., Kiouach, D., Global dynamics of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal. Model. Control 16 (2011), 59–76.
    • (2011) Nonlinear Anal. Model. Control , vol.16 , pp. 59-76
    • Lahrouz, A.1    Omari, L.2    Kiouach, D.3
  • 14
    • 85016084605 scopus 로고    scopus 로고
    • Comparison of deterministic and stochastic SIRS epidemic model with saturating incidence and immigration
    • [14] Lahrouz, A., Omari, L., Settati, A., Belmaâti, A., Comparison of deterministic and stochastic SIRS epidemic model with saturating incidence and immigration. Arab. J. Math. 4 (2015), 101–106.
    • (2015) Arab. J. Math. , vol.4 , pp. 101-106
    • Lahrouz, A.1    Omari, L.2    Settati, A.3    Belmaâti, A.4
  • 15
    • 84923789423 scopus 로고    scopus 로고
    • Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence
    • [15] Liu, Q., Chen, Q., Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428 (2015), 140–153.
    • (2015) Physica A , vol.428 , pp. 140-153
    • Liu, Q.1    Chen, Q.2
  • 18
    • 33746594608 scopus 로고    scopus 로고
    • Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission
    • [18] Korobeinikov, A., Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68 (2006), 615–626.
    • (2006) Bull. Math. Biol. , vol.68 , pp. 615-626
    • Korobeinikov, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.