메뉴 건너뛰기




Volumn 317, Issue 10, 2017, Pages 1068-1069

Logistic regression diagnostics understanding how well a model predicts outcomes

Author keywords

[No Author keywords available]

Indexed keywords

HUMAN; LOGISTIC REGRESSION ANALYSIS; OUTCOME ASSESSMENT; POSTCONCUSSION SYNDROME; PREDICTION; PREDICTOR VARIABLE; PROBABILITY; RECEIVER OPERATING CHARACTERISTIC; REVIEW; RISK FACTOR; SENSITIVITY AND SPECIFICITY; STATISTICAL ANALYSIS; STATISTICAL MODEL; VALIDITY; REGRESSION ANALYSIS;

EID: 85015584942     PISSN: 00987484     EISSN: 15383598     Source Type: Journal    
DOI: 10.1001/jama.2016.20441     Document Type: Review
Times cited : (135)

References (10)
  • 1
    • 84960922350 scopus 로고    scopus 로고
    • Pediatric Emergency Research Canada (PERC) Concussion Team. Clinical risk score for persistent postconcussion symptoms among children with acute concussion in the ED
    • Zemek R, Barrowman N, Freedman SB, et al; Pediatric Emergency Research Canada (PERC) Concussion Team. Clinical risk score for persistent postconcussion symptoms among children with acute concussion in the ED. JAMA. 2016;315(10): 1014-1025
    • (2016) JAMA , vol.315 , Issue.10 , pp. 1014-1025
    • Zemek, R.1    Barrowman, N.2    Freedman, S.B.3
  • 2
    • 84982121540 scopus 로고    scopus 로고
    • Logistic regression: Relating patient characteristics to outcomes
    • Tolles J, Meurer WJ. Logistic regression: relating patient characteristics to outcomes. JAMA. 2016; 316(5):533-534
    • (2016) JAMA , vol.316 , Issue.5 , pp. 533-534
    • Tolles, J.1    Meurer, W.J.2
  • 3
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 4
    • 84941662354 scopus 로고    scopus 로고
    • Evaluating discrimination of risk prediction models: The C statistic
    • Pencina MJ, D'Agostino RB Sr. Evaluating discrimination of risk prediction models: the C statistic. JAMA. 2015;314(10):1063-1064
    • (2015) JAMA , vol.314 , Issue.10 , pp. 1063-1064
    • Pencina, M.J.1    D'Agostino, R.B.2
  • 5
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240(4857):1285-1293
    • (1988) Science , vol.240 , Issue.4857 , pp. 1285-1293
    • Swets, J.A.1
  • 7
    • 0001608056 scopus 로고    scopus 로고
    • An R-squared measure of goodness of fit for some common nonlinear regression models
    • Cameron AC, Windmeijer FAG. An R-squared measure of goodness of fit for some common nonlinear regression models. J Econom. 1997;77(2): 329-342. doi:10.1016/S0304-4076(96)01818-0
    • (1997) J Econom , vol.77 , Issue.2 , pp. 329-342
    • Cameron, A.C.1    Windmeijer, F.A.G.2
  • 9
    • 0031006441 scopus 로고    scopus 로고
    • A comparison of goodness-of-fit tests for the logistic regression model
    • Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997;16(9): 965-980
    • (1997) Stat Med , vol.16 , Issue.9 , pp. 965-980
    • Hosmer, D.W.1    Hosmer, T.2    Le Cessie, S.3    Lemeshow, S.4
  • 10
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron B. How biased is the apparent error rate of a prediction rule? J AmStat Assoc. 1986;81(394): 461-470. doi:10.2307/2289236
    • (1986) J AmStat Assoc , vol.81 , Issue.394 , pp. 461-470
    • Efron, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.