메뉴 건너뛰기




Volumn 36, Issue , 2006, Pages

Study of mixed kernel effect on classification accuracy using density estimation

Author keywords

Density Estimation; Fuzzy Error Matrix (FERM); Mixed Kernel Function; Sub Pixel; Support Vector Machine (SVM)

Indexed keywords

CHARACTER RECOGNITION; DISTRIBUTION FUNCTIONS; FACE RECOGNITION; MATRIX ALGEBRA; OBJECT RECOGNITION; PIXELS; PROBABILITY DENSITY FUNCTION; REMOTE SENSING; TEXT PROCESSING;

EID: 85015443377     PISSN: 16821750     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (26)
  • 1
    • 79952687235 scopus 로고    scopus 로고
    • Advanced supervised sub-pixel multi-spectral image classifier
    • Jakarta. Indonesia
    • Kumar A., Ghosh S. K., Dadhwal V. K., 2005, Advanced Supervised Sub-Pixel Multi-Spectral Image Classifier, Map Asia 2005 conference, Jakarta. Indonesia.
    • (2005) Map Asia 2005 Conference
    • Kumar, A.1    Ghosh, S.K.2    Dadhwal, V.K.3
  • 3
    • 84902205493 scopus 로고    scopus 로고
    • Comparison of view-based object recognition algorithms using realistic 3d models
    • C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Berlin, Springer Lecture Notes in Computer Science, 1112
    • Blanz, V., SchÖlkopf, B., Bülthoff, H., Burges, C., Vapnik, V. and Vetter, T. 1996, Comparison of view-based object recognition algorithms using realistic 3d models. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks-ICANN'96, pages 251 - 256, Berlin, Springer Lecture Notes in Computer Science, Vol. 1112.
    • (1996) Artificial Neural Networks-ICANN'96 , pp. 251-256
    • Blanz, V.1    SchÖlkopf, B.2    Bülthoff, H.3    Burges, C.4    Vapnik, V.5    Vetter, T.6
  • 5
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector learning machines
    • M. Mozer, M. Jordan, and T. Petsche, editors, Cambridge, MA, MIT Press
    • Burges, C.J.C. and SchÖlkopf, B. 1997, Improving the accuracy and speed of support vector learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375-381, Cambridge, MA, MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 375-381
    • Burges, C.J.C.1    SchÖlkopf, B.2
  • 6
    • 0002615660 scopus 로고    scopus 로고
    • Geometry and invariance in kernel based methods
    • Bernhard SchÖlkopf, Christopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA
    • Burges, C. J. C. 1998, Geometry and invariance in kernel based methods. In Advances in Kernel Methods - Support Vector Learning, Bernhard SchÖlkopf, Christopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Burges, C.J.C.1
  • 7
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C. and Vapnik, V. 1995, Support vector networks. Machine Learning, 20:273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0242712308 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral image Classification with Spectral-based kernels
    • Grégoire Mercier and Marc Lennon, 2003, Support Vector Machines for Hyperspectral Image Classification with Spectral-based kernels, IGARSS.
    • (2003) IGARSS
    • Mercier, G.1    Lennon, M.2
  • 10
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • CBCL AI Memo MIT
    • Girosi, F. 1998, An equivalence between sparse approximation and support vector machines. Neural Computation; CBCL AI Memo 1606, MIT.
    • (1998) Neural Computation , vol.1606
    • Girosi, F.1
  • 11
    • 0003425660 scopus 로고    scopus 로고
    • Technical report, LS VIII Number 23, University of Dortmund
    • Joachims, T. 1997, Text categorization with support vector machines. Technical report, LS VIII Number 23, University of Dortmund. ftp://ftpai.informatik.unidortmund.de/pub/Reports/report23.ps.Z.
    • (1997) Text Categorization with Support Vector Machines
    • Joachims, T.1
  • 14
  • 16
    • 85062579851 scopus 로고    scopus 로고
    • Mean field theory for density estimation using support vector machines
    • University of Louisville, Louisville, KY
    • Refaat M Mohamed, and Aly A Farag, 2004, Mean Field Theory for Density Estimation Using Support Vector Machines, Computer Vision and Image Processing Laboratory, University of Louisville, Louisville, KY, 40292.
    • (2004) Computer Vision and Image Processing Laboratory , pp. 40292
    • Mohamed, R.M.1    Farag, A.A.2
  • 18
    • 84902142380 scopus 로고    scopus 로고
    • Incorporating invariances in support vector learning machines
    • C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Berlin, Springer Lecture Notes in Computer Science, 1112
    • SchÖlkopf, B., Burges, C. and Vapnik, V. 1996, Incorporating invariances in support vector learning machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks - ICANN'96, pages 47 - 52, Berlin, Springer Lecture Notes in Computer Science, Vol. 1112.
    • (1996) Artificial Neural Networks - ICANN'96 , pp. 47-52
    • SchÖlkopf, B.1    Burges, C.2    Vapnik, V.3
  • 20
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • press
    • SchÖlkopf, B., Smola, A. and Müller, K. R. 1998, Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation. In press.
    • (1998) Neural Computation
    • SchÖlkopf, B.1    Smola, A.2    Müller, K.R.3
  • 21
    • 1042289791 scopus 로고    scopus 로고
    • Identifying speaker with support vector networks
    • Sydney
    • Schmidt, M. 1996, Identifying speaker with support vector networks. In Interface 96 Proceedings, Sydney.
    • (1996) Interface 96 Proceedings
    • Schmidt, M.1
  • 22
    • 24044515976 scopus 로고    scopus 로고
    • On a kernel-based method for pattern recognition, regression, approximation and operator inversion
    • Smola, A. J., and SchÖlkopf, B. 1998, On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica.
    • (1998) Algorithmica
    • Smola, A.J.1    SchÖlkopf, B.2
  • 24
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola, A. J., SchÖlkopf, B. and Müller, K. R. 1998, The connection between regularization operators and support vector kernels. Neural Networks.
    • (1998) Neural Networks
    • Smola, A.J.1    SchÖlkopf, B.2    Müller, K.R.3
  • 25
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik, V., Golowich, S. and Smola, 1996, A. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9:281-287.
    • (1996) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola3
  • 26
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel hilbert spaces and the randomized gacv
    • Bernhard SchÖlkopf, Christopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA
    • Wahba G. 1998, Support vector machines, reproducing kernel hilbert spaces and the randomized gacv. In Advances in Kernel Methods - Support Vector Learning, Bernhard SchÖlkopf, Christopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.