-
1
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber, M. F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., Moqtaderi, Z., et al. (2012). SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114-118. doi: 10.1038/nature11043
-
(2012)
Nature
, vol.487
, pp. 114-118
-
-
Barber, M.F.1
Michishita-Kioi, E.2
Xi, Y.3
Tasselli, L.4
Kioi, M.5
Moqtaderi, Z.6
-
2
-
-
84893362423
-
Sirt7 promotes adipogenesis by binding to and inhibiting Sirt1
-
Bober, E., Fang, J., Smolka, C., Ianni, A., Vakhrusheva, O., Krüger, M., et al. (2012). Sirt7 promotes adipogenesis by binding to and inhibiting Sirt1. BMC Proc. 6:p57. doi: 10.1186/1753-6561-6-S3-P57
-
(2012)
BMC Proc
, vol.6
, pp. 57
-
-
Bober, E.1
Fang, J.2
Smolka, C.3
Ianni, A.4
Vakhrusheva, O.5
Krüger, M.6
-
3
-
-
84887020906
-
Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3
-
Brenmoehl, J., and Hoeflich, A. (2013). Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13, 755-761. doi: 10.1016/j.mito.2013.04.002
-
(2013)
Mitochondrion
, vol.13
, pp. 755-761
-
-
Brenmoehl, J.1
Hoeflich, A.2
-
4
-
-
84859977895
-
Sirtuins mediate mammalian metabolic responses to nutrient availability
-
Chalkiadaki, A., and Guarente, L. (2012). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287-296. doi: 10.1038/nrendo.2011.225
-
(2012)
Nat. Rev. Endocrinol
, vol.8
, pp. 287-296
-
-
Chalkiadaki, A.1
Guarente, L.2
-
5
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng, H. L., Mostoslavsky, R., Saito, S., Manis, J. P., Gu, Y., Patel, P., et al. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 100, 10794-10799. doi: 10.1073/pnas.1934713100
-
(2003)
Proc. Natl. Acad. Sci. U.S.A
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
Manis, J.P.4
Gu, Y.5
Patel, P.6
-
6
-
-
33744466971
-
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
-
Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., and Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075-1080. doi: 10.1101/gad.1399706
-
(2006)
Genes Dev
, vol.20
, pp. 1075-1080
-
-
Ford, E.1
Voit, R.2
Liszt, G.3
Magin, C.4
Grummt, I.5
Guarente, L.6
-
7
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines, Z., Rodgers, J. T., Bare, O., Lerin, C., Kim, S. H., Mostoslavsky, R., et al. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26, 1913-1923. doi: 10.1038/sj.emboj.7601633
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
-
8
-
-
72949112693
-
Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation
-
Greiss, S., and Gartner, A. (2009). Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells 28, 407-415. doi: 10.1007/s10059-009-0169-x
-
(2009)
Mol. Cells
, vol.28
, pp. 407-415
-
-
Greiss, S.1
Gartner, A.2
-
9
-
-
64849107827
-
Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis
-
Grob, A., Roussel, P., Wright, J. E., McStay, B., Hernandez-Verdun, D., and Sirri, V. (2009). Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J. Cell Sci. 122, 489-498. doi: 10.1242/jcs.042382
-
(2009)
J. Cell Sci
, vol.122
, pp. 489-498
-
-
Grob, A.1
Roussel, P.2
Wright, J.E.3
McStay, B.4
Hernandez-Verdun, D.5
Sirri, V.6
-
10
-
-
84858797950
-
Sirtuins as regulators of metabolism and healthspan
-
Houtkooper, R. H., Pirinen, E., and Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225-238. doi: 10.1038/nrm3293
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 225-238
-
-
Houtkooper, R.H.1
Pirinen, E.2
Auwerx, J.3
-
11
-
-
84921033108
-
Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response
-
[Epub ahead of print]
-
Kiran, S., Oddi, V., and Ramakrishna, G. (2014). Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Exp. Cell Res. doi: 10.1016/j.yexcr.2014.11.001. [Epub ahead of print]
-
(2014)
Exp. Cell Res
-
-
Kiran, S.1
Oddi, V.2
Ramakrishna, G.3
-
12
-
-
34250318465
-
DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase
-
Lee, J., and Zhou, P. (2007). DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775-780. doi: 10.1016/j.molcel.2007.06.001
-
(2007)
Mol. Cell
, vol.26
, pp. 775-780
-
-
Lee, J.1
Zhou, P.2
-
13
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M., and Tschöp, M. H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U.S.A. 105, 9793-9798. doi: 10.1073/pnas.0802917105
-
(2008)
Proc. Natl. Acad. Sci. U.S.A
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschöp, M.H.5
-
14
-
-
84910145057
-
A SIRT7-dependent acetylation switch of GABPß1 controls mitochondrial function
-
Ryu, D., Jo, Y. S., Lo Sasso, G., Stein, S., Zhang, H., Perino, A., et al. (2014). A SIRT7-dependent acetylation switch of GABPß1 controls mitochondrial function. Cell Metab. 20, 856-869. doi: 10.1016/j.cmet.2014.08.001
-
(2014)
Cell Metab
, vol.20
, pp. 856-869
-
-
Ryu, D.1
Jo, Y.S.2
Lo Sasso, G.3
Stein, S.4
Zhang, H.5
Perino, A.6
-
15
-
-
84887613799
-
SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease
-
Shin, J., He, M., Liu, Y., Paredes, S., Villanova, L., Brown, K., et al. (2013). SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5, 654-665. doi: 10.1016/j.celrep.2013.10.007
-
(2013)
Cell Rep
, vol.5
, pp. 654-665
-
-
Shin, J.1
He, M.2
Liu, Y.3
Paredes, S.4
Villanova, L.5
Brown, K.6
-
16
-
-
84856755475
-
Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription
-
Tsai, Y. C., Greco, T. M., Boonmee, A., Miteva, Y., and Cristea, I. M. (2012). Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol. Cell. Proteomics 11:M111.015156. doi: 10.1074/mcp.A111.015156
-
(2012)
Mol. Cell. Proteomics
, vol.11
-
-
Tsai, Y.C.1
Greco, T.M.2
Boonmee, A.3
Miteva, Y.4
Cristea, I.M.5
-
17
-
-
84891761857
-
Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis
-
Tsai, Y. C., Greco, T. M., and Cristea, I. M. (2014). Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell. Proteomics 13, 73-83. doi: 10.1074/mcp.M113.031377
-
(2014)
Mol. Cell. Proteomics
, vol.13
, pp. 73-83
-
-
Tsai, Y.C.1
Greco, T.M.2
Cristea, I.M.3
-
18
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., et al. (2008). Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703-710. doi: 10.1161/CIRCRESAHA.107.164558
-
(2008)
Circ. Res
, vol.102
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
Kostin, S.4
Boettger, T.5
Kubin, T.6
-
19
-
-
84897484512
-
SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway
-
Yoshizawa, T., Karim, M. F., Sato, Y., Senokuchi, T., Miyata, K., Fukuda, T., et al. (2014). SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 19, 712-721. doi: 10.1016/j.cmet.2014.03.006
-
(2014)
Cell Metab
, vol.19
, pp. 712-721
-
-
Yoshizawa, T.1
Karim, M.F.2
Sato, Y.3
Senokuchi, T.4
Miyata, K.5
Fukuda, T.6
|