메뉴 건너뛰기




Volumn 47, Issue , 2012, Pages

Separation-resistant and bias-reduced logistic regression: STATISTICA macro

Author keywords

Complete separation; Logistic regression; STATISTICA

Indexed keywords


EID: 84863307437     PISSN: None     EISSN: 15487660     Source Type: Journal    
DOI: 10.18637/jss.v047.c02     Document Type: Article
Times cited : (11)

References (20)
  • 1
    • 0002662712 scopus 로고
    • On the Existence of Maximum Likelihood Estimates in Logistic Regression Models
    • Albert A, Anderson JA (1984). On the Existence of Maximum Likelihood Estimates in Logistic Regression Models. Biometrika, 71(1), 1-10.
    • (1984) Biometrika , vol.71 , Issue.1 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 2
    • 0037187858 scopus 로고    scopus 로고
    • A Modified Score Function Estimator for Multinomial Logistic Regression in Small Samples
    • Bull SB, Mak C, Greenwood CMT (2002). A Modified Score Function Estimator for Multinomial Logistic Regression in Small Samples. Computational Statistics & Data Analysis, 39, 57-74.
    • (2002) Computational Statistics & Data Analysis , vol.39 , pp. 57-74
    • Bull, S.B.1    Mak, C.2    Greenwood, C.M.T.3
  • 3
    • 78649533600 scopus 로고    scopus 로고
    • Properties and Implementation of Jeffreys's Prior in Binomial Regression Models
    • Chen MH, Ibrahim JG, Kim S (2008). Properties and Implementation of Jeffreys's Prior in Binomial Regression Models. Journal of the American Statistical Association, 103(484), 1659-1664.
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.484 , pp. 1659-1664
    • Chen, M.H.1    Ibrahim, J.G.2    Kim, S.3
  • 5
    • 0002433422 scopus 로고
    • Bias Reduction, the Jeffreys Prior and GLIM
    • R Gilchrist, G Tutz (eds.), Springer-Verlag
    • Firth D (1992a). Bias Reduction, the Jeffreys Prior and GLIM. In R Gilchrist, G Tutz (eds.), Advances in GLIM and Statistical Modelling, pp. 91-100. Springer-Verlag.
    • (1992) Advances In GLIM and Statistical Modelling , pp. 91-100
    • Firth, D.1
  • 6
    • 0000867603 scopus 로고
    • Generalized Linear Models and Jeffreys Priors: An Iterative Weighted Leastsquares Approach
    • In Y Dodge, J Whittaker (eds.), Physica-Verlag, Heidelberg
    • Firth D (1992b). Generalized Linear Models and Jeffreys Priors: An Iterative Weighted Leastsquares Approach. In Y Dodge, J Whittaker (eds.), Computational Statistics, volume 1, pp. 553-557. Physica-Verlag, Heidelberg.
    • (1992) Computational Statistics , vol.1 , pp. 553-557
    • Firth, D.1
  • 7
    • 0002178053 scopus 로고
    • Bias Reduction of Maximum Likelihood Estimates
    • Firth D (1993). Bias Reduction of Maximum Likelihood Estimates. Biometrika, 80(1), 27-38.
    • (1993) Biometrika , vol.80 , Issue.1 , pp. 27-38
    • Firth, D.1
  • 9
    • 0004296209 scopus 로고    scopus 로고
    • 5th edition. Prentice Hall, Upper Saddle River
    • Greene WH (2003). Econometric Analysis. 5th edition. Prentice Hall, Upper Saddle River.
    • (2003) Econometric Analysis
    • Greene, W.H.1
  • 10
    • 0005821803 scopus 로고    scopus 로고
    • Technical Report 10, Section of Clinical Biometrics, Department of Medical Computer Sciences, University of Vienna, Vienna, Austria
    • Heinze G (1999). The Application of Firth's Procedure to Cox and Logistic Regression. Technical Report 10, Section of Clinical Biometrics, Department of Medical Computer Sciences, University of Vienna, Vienna, Austria.
    • (1999) The Application of Firth's Procedure to Cox and Logistic Regression
    • Heinze, G.1
  • 11
    • 33845900763 scopus 로고    scopus 로고
    • A Comparative Investigation of Methods for Logistic Regression with Separated or Nearly Separated Data
    • Heinze G (2006). A Comparative Investigation of Methods for Logistic Regression with Separated or Nearly Separated Data. Statistics in Medicine, 25(24), 4216-4226.
    • (2006) Statistics In Medicine , vol.25 , Issue.24 , pp. 4216-4226
    • Heinze, G.1
  • 12
    • 33845869707 scopus 로고    scopus 로고
    • A SAS Macro, S-PLUS Library and R Package to Perform Logistic Regression without Convergence Problems
    • Department of Medical Computer Sciences, Medical University of Vienna, Vienna, Austria
    • Heinze G, Ploner M (2004). A SAS Macro, S-PLUS Library and R Package to Perform Logistic Regression without Convergence Problems. Technical report, Section of Clinical Biometrics, Department of Medical Computer Sciences, Medical University of Vienna, Vienna, Austria.
    • (2004) Technical Report, Section of Clinical Biometrics
    • Heinze, G.1    Ploner, M.2
  • 13
    • 0037199788 scopus 로고    scopus 로고
    • A Solution to the Problem of Separation in Logistic Regression
    • Heinze G, Schemper M (2002). A Solution to the Problem of Separation in Logistic Regression. Statistics in Medicine, 21(16), 2409-2419.
    • (2002) Statistics In Medicine , vol.21 , Issue.16 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 16
    • 71249090906 scopus 로고    scopus 로고
    • Bias Reduction in Exponential Family Nonlinear Models
    • Kosmidis I, Firth D (2009). Bias Reduction in Exponential Family Nonlinear Models. Biometrika, 96(4), 793-804.
    • (2009) Biometrika , vol.96 , Issue.4 , pp. 793-804
    • Kosmidis, I.1    Firth, D.2
  • 19
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team Vienna, R Foundation For Statistical Computing Austria. ISBN 3-900051-07-0
    • R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
    • (2012) R: A Language and Environment for Statistical Computing
  • 20
    • 84863307848 scopus 로고    scopus 로고
    • STATISTICA Version 9.1
    • StatSoft, Inc (2010). STATISTICA Version 9.1. URL http://www.statsoft.com/.
    • (2010)
    • Statsoft, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.