메뉴 건너뛰기




Volumn , Issue , 2016, Pages 243-252

CCRP: Customized cooperative resource provisioning for high resource utilization in clouds

Author keywords

[No Author keywords available]

Indexed keywords

RESOURCE ALLOCATION;

EID: 85015204745     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BigData.2016.7840610     Document Type: Conference Paper
Times cited : (15)

References (45)
  • 2
    • 84873134968 scopus 로고    scopus 로고
    • Interactive analytical processing in big data systems: Across-industry study of mapreduce workloads
    • Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in big data systems: Across-industry study of mapreduce workloads. In Proc. of VLDB, 2012.
    • (2012) Proc. of VLDB
    • Chen, Y.1    Alspaugh, S.2    Katz, R.3
  • 3
    • 80053019024 scopus 로고    scopus 로고
    • The case for evaluating mapreduce performance using workload suites
    • Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating mapreduce performance using workload suites. In MASCOTS, 2011.
    • (2011) MASCOTS
    • Chen, Y.1    Ganapathi, A.2    Griffith, R.3    Katz, R.4
  • 5
    • 85015238237 scopus 로고    scopus 로고
    • A popularity-aware cost-effective replication scheme for high data durability in cloud storage
    • J. Liu and H. Shen. A popularity-aware cost-effective replication scheme for high data durability in cloud storage. In IEEE Big Data, 2016.
    • (2016) IEEE Big Data
    • Liu, J.1    Shen, H.2
  • 6
    • 84975250738 scopus 로고    scopus 로고
    • HCloud: Resource-efficient provisioning in shared cloud systems
    • C. Delimitrou and C. Kozyrakis. HCloud: Resource-efficient provisioning in shared cloud systems. In Proc. of ASPLOS, 2016.
    • (2016) Proc. of ASPLOS
    • Delimitrou, C.1    Kozyrakis, C.2
  • 7
    • 85013200606 scopus 로고    scopus 로고
    • CORP: Cooperative opportunistic resource provisioning for short-lived jobs in cloud systems
    • J. Liu, H. Shen, and L. Chen. CORP: Cooperative opportunistic resource provisioning for short-lived jobs in cloud systems. In Proc. of IEEE Cluster, 2016.
    • (2016) Proc. of IEEE Cluster
    • Liu, J.1    Shen, H.2    Chen, L.3
  • 8
    • 84967167579 scopus 로고    scopus 로고
    • Retro: Targeted resource management in multi-tenant distributed systems
    • J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. Retro: Targeted resource management in multi-tenant distributed systems. In Proc. of NSDI, 2015.
    • (2015) Proc. of NSDI
    • Mace, J.1    Bodik, P.2    Fonseca, R.3    Musuvathi, M.4
  • 10
    • 85012952393 scopus 로고    scopus 로고
    • Dependency-aware and resource-efficient scheduling for heterogeneous jobs in clouds
    • J. Liu and H. Shen. Dependency-aware and resource-efficient scheduling for heterogeneous jobs in clouds. In Proc. of CloudCom, 2016.
    • (2016) Proc. of CloudCom
    • Liu, J.1    Shen, H.2
  • 11
    • 85015194393 scopus 로고    scopus 로고
    • An exploration of designing a hybrid scale-up/out hadoop architecture based on performance measurements
    • Z. Li, H. Shen, W. Ligon, and J. Denton. An exploration of designing a hybrid scale-up/out hadoop architecture based on performance measurements. TPDS, PP(99):1-1, 2016.
    • (2016) TPDS , vol.PP , Issue.99 , pp. 1
    • Li, Z.1    Shen, H.2    Ligon, W.3    Denton, J.4
  • 13
    • 85118316888 scopus 로고    scopus 로고
    • Wrangler: Predictable and faster jobs using fewer resources
    • N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz. Wrangler: Predictable and faster jobs using fewer resources. In SoCC, 2014.
    • (2014) SoCC
    • Yadwadkar, N.J.1    Ananthanarayanan, G.2    Katz, R.3
  • 15
    • 85037040366 scopus 로고    scopus 로고
    • HUG: Multi-resource fairness for correlated and elastic demands
    • M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG: Multi-resource fairness for correlated and elastic demands. In Proc. of NSDI, 2016.
    • (2016) Proc. of NSDI
    • Chowdhury, M.1    Liu, Z.2    Ghodsi, A.3    Stoica, I.4
  • 17
    • 84903143550 scopus 로고    scopus 로고
    • Strategyproof allocation of discrete jobs on multiple machines
    • E. J. Friedman, A. Ghodsi, and C.-A. Psomas. Strategyproof allocation of discrete jobs on multiple machines. In Proc. of ACM EC, 2014.
    • (2014) Proc. of ACM EC
    • Friedman, E.J.1    Ghodsi, A.2    Psomas, C.-A.3
  • 18
    • 84987717578 scopus 로고    scopus 로고
    • A performance model to estimate execution time of scientific workflows on the cloud
    • I. Pietri, G. Juve, E. Deelman, and R. Sakellariou. A performance model to estimate execution time of scientific workflows on the cloud. In WORKS'14, pages 11-19, 2014.
    • (2014) WORKS'14 , pp. 11-19
    • Pietri, I.1    Juve, G.2    Deelman, E.3    Sakellariou, R.4
  • 19
    • 85012950507 scopus 로고    scopus 로고
    • accessed in Aug.
    • CPLEX linear program solver. http://www-01.ibm.com/software/integra tion/optimization/cplex-optimizer/ [accessed in Aug. 2016].
    • (2016) CPLEX Linear Program Solver
  • 21
    • 82155203111 scopus 로고    scopus 로고
    • Activesla: A profit-oriented admission control framework for databaseas-a-service providers
    • Cascais, October
    • P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacigümüs. Activesla: A profit-oriented admission control framework for databaseas-a-service providers. In Proc. of SoCC, Cascais, October 2011.
    • (2011) Proc. of SoCC
    • Xiong, P.1    Chi, Y.2    Zhu, S.3    Tatemura, J.4    Pu, C.5    Hacigümüs, H.6
  • 23
    • 57349140324 scopus 로고    scopus 로고
    • Predicting information seeker satisfaction in community question answering
    • Y. Liu, J. Bian, and E. Agichtein. Predicting information seeker satisfaction in community question answering. In Proc. of SIGIR, 2008.
    • (2008) Proc. of SIGIR
    • Liu, Y.1    Bian, J.2    Agichtein, E.3
  • 24
    • 85015367708 scopus 로고    scopus 로고
    • Question quality analysis and prediction in community question answering services with coupled mutual reinforcement
    • J. Liu, H. Shen, and L. Yu. Question quality analysis and prediction in community question answering services with coupled mutual reinforcement. TSC, PP(99):1-14, 2015.
    • (2015) TSC , vol.PP , Issue.99 , pp. 1-14
    • Liu, J.1    Shen, H.2    Yu, L.3
  • 26
    • 85015155697 scopus 로고    scopus 로고
    • Google trace
    • Google trace. https://code.google.com/p/googleclusterdata/.
  • 27
    • 84870524514 scopus 로고    scopus 로고
    • Heterogeneity and dynamicity of clouds at scale: Google trace analysis
    • San Jose, October
    • C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In Proc. of SoCC, San Jose, October 2012.
    • (2012) Proc. of SoCC
    • Reiss, C.1    Tumanov, A.2    Ganger, G.R.3    Katz, R.H.4    Kozuch, M.A.5
  • 29
    • 82155187188 scopus 로고    scopus 로고
    • Cloudscale: Elastic resource scaling for multi-tenant cloud systems
    • Oct.
    • Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: Elastic resource scaling for multi-tenant cloud systems. In Proc. of SoCC, Oct. 2011.
    • (2011) Proc. of SoCC
    • Shen, Z.1    Subbiah, S.2    Gu, X.3    Wilkes, J.4
  • 30
    • 84921334095 scopus 로고    scopus 로고
    • SCPS: A socialaware distributed cyber-physical human-centric search engine
    • H. Shen, J. Liu, K. Chen, J. Liu, and S. Moyer. SCPS: A socialaware distributed cyber-physical human-centric search engine. IEEE Transactions on Computers (TC), 64:518-532, 2015.
    • (2015) IEEE Transactions on Computers (TC) , vol.64 , pp. 518-532
    • Shen, H.1    Liu, J.2    Chen, K.3    Liu, J.4    Moyer, S.5
  • 31
    • 84959386357 scopus 로고    scopus 로고
    • Exploiting active sub-areas for multi-copy routing in vdtns
    • B. Wu, H. Shen, and K. Chen. Exploiting active sub-areas for multi-copy routing in vdtns. In Proc. of ICCCN, 2015.
    • (2015) Proc. of ICCCN
    • Wu, B.1    Shen, H.2    Chen, K.3
  • 32
    • 84920747718 scopus 로고    scopus 로고
    • Deep autoencoder neural networks for gene ontology annotation predictions
    • D. Chicco, P. Sadowski, and P. Baldi. Deep autoencoder neural networks for gene ontology annotation predictions. In ACM BCB, 2014.
    • (2014) ACM BCB
    • Chicco, D.1    Sadowski, P.2    Baldi, P.3
  • 33
    • 84930631638 scopus 로고    scopus 로고
    • Probabilistic machine learning and artificial intelligence
    • Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521:452-459, 2015.
    • (2015) Nature , vol.521 , pp. 452-459
    • Ghahramani, Z.1
  • 35
    • 77954117638 scopus 로고    scopus 로고
    • Efficient management of data center resources for massively multiplayer online games
    • V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer. Efficient management of data center resources for massively multiplayer online games. In Proc. of SC, 2008.
    • (2008) Proc. of SC
    • Nae, V.1    Iosup, A.2    Podlipnig, S.3    Prodan, R.4    Epema, D.5    Fahringer, T.6
  • 36
    • 85017384565 scopus 로고    scopus 로고
    • Load-aware and congestion-free state management in network function virtualization
    • J. Liu, H. Shen, and H. Hu. Load-aware and congestion-free state management in network function virtualization. In Proc. of ICNC, 2017.
    • (2017) Proc. of ICNC
    • Liu, J.1    Shen, H.2    Hu, H.3
  • 37
    • 84960864755 scopus 로고    scopus 로고
    • Characterizing data deliverability of greedy routing in wireless sensor networks
    • Seattle, June
    • J. Liu, L. Yu, H. Shen, Y. He, and J. Hallstrom. Characterizing data deliverability of greedy routing in wireless sensor networks. In Proc. of SECON, Seattle, June 2015.
    • (2015) Proc. of SECON
    • Liu, J.1    Yu, L.2    Shen, H.3    He, Y.4    Hallstrom, J.5
  • 38
    • 84936935791 scopus 로고    scopus 로고
    • Defragmenting the cloud using demand-based resource allocation
    • G. Shanmuganathan, A. Gulati, and P. Varman. Defragmenting the cloud using demand-based resource allocation. In SIGMETRICS, 2013.
    • (2013) SIGMETRICS
    • Shanmuganathan, G.1    Gulati, A.2    Varman, P.3
  • 39
    • 85015161757 scopus 로고    scopus 로고
    • A low-cost multi-failure resilient replication scheme for high data availability in cloud storage
    • J. Liu and H. Shen. A low-cost multi-failure resilient replication scheme for high data availability in cloud storage. In Proc. of HiPC, 2016.
    • (2016) Proc. of HiPC
    • Liu, J.1    Shen, H.2
  • 40
    • 85027926799 scopus 로고    scopus 로고
    • Traffic flow prediction with big data: A deep learning approach
    • Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang. Traffic flow prediction with big data: A deep learning approach. ITS, 16(2):865-873, 2015.
    • (2015) ITS , vol.16 , Issue.2 , pp. 865-873
    • Lv, Y.1    Duan, Y.2    Kang, W.3    Li, Z.4    Wang, F.5
  • 41
  • 42
    • 85015174807 scopus 로고    scopus 로고
    • Amazon EC2.[accessed in Aug. 2016]
    • Amazon EC2. http://aws.amazon.com/ec2 [accessed in Aug. 2016].
  • 44
    • 79961143765 scopus 로고    scopus 로고
    • Improving utilization of infrastructure clouds
    • P. Marshall, K. Keahey, and T. Freeman. Improving utilization of infrastructure clouds. In IEEE/ACM CCGrid, pages 205-214, 2011.
    • (2011) IEEE/ACM CCGrid , pp. 205-214
    • Marshall, P.1    Keahey, K.2    Freeman, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.