-
3
-
-
84911994408
-
The concepts of risk and safety
-
S. Roeser, R. Hillerbrand, P. Sandin, and M. Peterson, Eds. Dordrecht, Netherlands: Springer
-
N. Möller, "The concepts of risk and safety," in Handbook of Risk Theory, S. Roeser, R. Hillerbrand, P. Sandin, and M. Peterson, Eds. Dordrecht, Netherlands: Springer, 2012, pp. 55-85.
-
(2012)
Handbook of Risk Theory
, pp. 55-85
-
-
Möller, N.1
-
4
-
-
0040864988
-
Principles of risk minimization for learning theory
-
V. Vapnik, "Principles of risk minimization for learning theory," in Adv. Neur. Inf. Process. Syst. 4, 1992, pp. 831-838.
-
(1992)
Adv. Neur. Inf. Process. Syst.
, vol.4
, pp. 831-838
-
-
Vapnik, V.1
-
5
-
-
84867137280
-
Machine learning that matters
-
Edinburgh, United Kingdom, Jun.-Jul.
-
K. L. Wagstaff, "Machine learning that matters," in Proc. Int. Conf. Mach. Learn., Edinburgh, United Kingdom, Jun.-Jul. 2012, pp. 529-536.
-
(2012)
Proc. Int. Conf. Mach. Learn.
, pp. 529-536
-
-
Wagstaff, K.L.1
-
6
-
-
85015164134
-
Data science of the people, for the people, by the people: A viewpoint on an emerging dichotomy
-
New York, NY, Sep.
-
K. R. Varshney, "Data science of the people, for the people, by the people: A viewpoint on an emerging dichotomy," in Proc. Data for Good Exchange Conf., New York, NY, Sep. 2015.
-
(2015)
Proc. Data for Good Exchange Conf.
-
-
Varshney, K.R.1
-
7
-
-
39749101321
-
Principles of engineering safety: Risk and uncertainty reduction
-
Jun.
-
N. Möller and S. O. Hansson, "Principles of engineering safety: Risk and uncertainty reduction," Reliab. Eng. Syst. Safe., vol. 93, no. 6, pp. 798-805, Jun. 2008.
-
(2008)
Reliab. Eng. Syst. Safe.
, vol.93
, Issue.6
, pp. 798-805
-
-
Möller, N.1
Hansson, S.O.2
-
8
-
-
84907019464
-
Machine learning, medical diagnosis, and biomedical engineering research - Commentary
-
Jul.
-
K. R. Foster, R. Koprowski, and J. D. Skulfca, "Machine learning, medical diagnosis, and biomedical engineering research - commentary," Biomed. Eng. Online, vol. 13, p. 94, Jul. 2014.
-
(2014)
Biomed. Eng. Online
, vol.13
, pp. 94
-
-
Foster, K.R.1
Koprowski, R.2
Skulfca, J.D.3
-
9
-
-
84937523151
-
Benchmarking state-of-the-art classification algorithms for credit scoring: A tenyear update
-
Nov.
-
S. Lessmann, H.-V. Seow, B. Baesens, and L. C. Thomas, "Benchmarking state-of-the-art classification algorithms for credit scoring: A tenyear update," Eur. J. Oper. Res., vol. 247, no. 1, pp. 124-136, Nov. 2015.
-
(2015)
Eur. J. Oper. Res.
, vol.247
, Issue.1
, pp. 124-136
-
-
Lessmann, S.1
Seow, H.-V.2
Baesens, B.3
Thomas, L.C.4
-
10
-
-
84957942732
-
Machine learning forecasts of risk to inform sentencing decisions
-
Apr.
-
R. Berk and J. Hyatt, "Machine learning forecasts of risk to inform sentencing decisions," Federal Sentencing Reporter, vol. 27, no. 4, pp. 222-228, Apr. 2015.
-
(2015)
Federal Sentencing Reporter
, vol.27
, Issue.4
, pp. 222-228
-
-
Berk, R.1
Hyatt, J.2
-
11
-
-
60649095145
-
Machine learning techniques applied to dynamic video adapting
-
San Diego, CA, Dec.
-
R. Eisinger, R. A. F. Romero, and R. Goularte, "Machine learning techniques applied to dynamic video adapting," in Proc. Int. Conf. Mach. Learn. Appl., San Diego, CA, Dec. 2008, pp. 819-822.
-
(2008)
Proc. Int. Conf. Mach. Learn. Appl.
, pp. 819-822
-
-
Eisinger, R.1
Romero, R.A.F.2
Goularte, R.3
-
13
-
-
84879478820
-
Content recommendation on web portals
-
Jun.
-
D. Agarwal, B.-C. Chen, P. Elango, and R. Ramakrishnan, "Content recommendation on web portals," Comm. ACM, vol. 56, no. 6, pp. 92-101, Jun. 2013.
-
(2013)
Comm. ACM
, vol.56
, Issue.6
, pp. 92-101
-
-
Agarwal, D.1
Chen, B.-C.2
Elango, P.3
Ramakrishnan, R.4
-
14
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
Nov.
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
17
-
-
84954161181
-
Certifying and removing disparate impact
-
Sydney, Australia, Aug.
-
M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian, "Certifying and removing disparate impact," in Proc. ACM SIGKDD Conf. Knowl. Discov. Data Min., Sydney, Australia, Aug. 2015, pp. 259-268.
-
(2015)
Proc. ACM SIGKDD Conf. Knowl. Discov. Data Min.
, pp. 259-268
-
-
Feldman, M.1
Friedler, S.A.2
Moeller, J.3
Scheidegger, C.4
Venkatasubramanian, S.5
-
18
-
-
84884795623
-
Practical ensemble classification error bounds for different operating points
-
Nov.
-
K. R. Varshney, R. J. Prenger, T. L. Marlatt, B. Y. Chen, and W. G. Hanley, "Practical ensemble classification error bounds for different operating points," IEEE Trans. Knowl. Data Eng., vol. 25, no. 11, pp. 2590-2601, Nov. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.11
, pp. 2590-2601
-
-
Varshney, K.R.1
Prenger, R.J.2
Marlatt, T.L.3
Chen, B.Y.4
Hanley, W.G.5
-
19
-
-
84924757988
-
Beat the machine: Challenging humans to find a predictive model's "unknown unknowns"
-
Mar.
-
J. Attenberg, P. Ipeirotis, and F. Provost, "Beat the machine: Challenging humans to find a predictive model's "unknown unknowns"," ACM J. Data Inf. Qual., vol. 6, no. 1, p. 1, Mar. 2015.
-
(2015)
ACM J. Data Inf. Qual.
, vol.6
, Issue.1
, pp. 1
-
-
Attenberg, J.1
Ipeirotis, P.2
Provost, F.3
-
20
-
-
20844458491
-
Mining with rarity: A unifying framework
-
Jun.
-
G. M. Weiss, "Mining with rarity: A unifying framework," SIGKDD Explor. Newsletter, vol. 6, no. 1, pp. 7-19, Jun. 2004.
-
(2004)
SIGKDD Explor. Newsletter
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
|