메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Pap smear image classification using convolutional neural network

Author keywords

Deep learning; LSSVM; Pap smear image; Softmax regression

Indexed keywords

COMPUTER AIDED INSTRUCTION; COMPUTER VISION; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; IMAGE CLASSIFICATION; IMAGE RETRIEVAL; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 85014841160     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3009977.3010068     Document Type: Conference Paper
Times cited : (69)

References (27)
  • 2
    • 85049210774 scopus 로고    scopus 로고
    • Pap smear cell image classification using global mpeg7 descriptor
    • S38
    • L. H. Camargo, G. Diaz, and E. Romero. Pap smear cell image classification using global mpeg7 descriptor. Dignostic Pathology, 8 ( (Suppl 1): S38): 1-4, 2013.
    • (2013) Dignostic Pathology , vol.8 , pp. 1-4
    • Camargo, L.H.1    Diaz, G.2    Romero, E.3
  • 3
    • 33645257704 scopus 로고    scopus 로고
    • Computer aided detection (cad): An overview
    • R. A. Castellino. Computer aided detection (cad): An overview. Cancer Imaging, 5 (1): 17-19, 2005.
    • (2005) Cancer Imaging , vol.5 , Issue.1 , pp. 17-19
    • Castellino, R.A.1
  • 5
  • 6
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in us images and pulmonary nodules in ct scans
    • J. Z. Cheng, D. Ni, J. Qin, C. M. Tiu, Y. C. Chang, C. S. Huang, S. Dinggang, and C. M. Chen. Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in us images and pulmonary nodules in ct scans. Scientific Reports, 6: 1-13, 2016.
    • (2016) Scientific Reports , vol.6 , pp. 1-13
    • Cheng, J.Z.1    Ni, D.2    Qin, J.3    Tiu, C.M.4    Chang, Y.C.5    Huang, C.S.6    Dinggang, S.7    Chen, C.M.8
  • 7
    • 84947863343 scopus 로고    scopus 로고
    • Comparative assessment of efficiency for content based image retrieval systems using different wavelet features and pre-classifier
    • M. Chowdhury and M. K. Kundu. Comparative assessment of efficiency for content based image retrieval systems using different wavelet features and pre-classifier. Multimedia Tools and Application, 74 (24): 11595-11630, 2015.
    • (2015) Multimedia Tools and Application , vol.74 , Issue.24 , pp. 11595-11630
    • Chowdhury, M.1    Kundu, M.K.2
  • 8
    • 84864290039 scopus 로고    scopus 로고
    • Unsupervised segmentation and classification of cervical cell images
    • A. Genctav, S. Aksoy, and S. Onder. Unsupervised segmentation and classification of cervical cell images. Pattern Recognition, 45 (12): 4151-4168, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.12 , pp. 4151-4168
    • Genctav, A.1    Aksoy, S.2    Onder, S.3
  • 11
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C. W. Hsu and C. J. Lin. A comparison of methods for multi-class support vector machines. Neural Network, IEEE transaction on, 13 (2): 427-437, 2002.
    • (2002) Neural Network, IEEE Transaction on , vol.13 , Issue.2 , pp. 427-437
    • Hsu, C.W.1    Lin, C.J.2
  • 13
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia, E. Shelhamer, J. Donahue, and S. Karayev. Caffe: Convolutional architecture for fast feature embedding. In In Proc. of MM, page 675-678, 2016.
    • (2016) Proc. of MM , pp. 675-678
    • Jia, Y.1    Shelhamer, E.2    Donahue, J.3    Karayev, S.4
  • 16
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural network
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural network. In Proceeding of NIPS, pages 1106-1114, 2015.
    • (2015) Proceeding of NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 84923856075 scopus 로고    scopus 로고
    • An improved joint optimization of multiple level set function for the segmentation of overlapping cervical cells
    • Z. Lu, G. Carneiro, and A. P. Bardley. An improved joint optimization of multiple level set function for the segmentation of overlapping cervical cells. Image Processing, IEEE Transaction on, 24 (4): 1261-1272, 2015.
    • (2015) Image Processing, IEEE Transaction on , vol.24 , Issue.4 , pp. 1261-1272
    • Lu, Z.1    Carneiro, G.2    Bardley, A.P.3
  • 21
    • 79851507983 scopus 로고    scopus 로고
    • Combining shape, texture and intensity features for cell nuclei extraction in pap smear images
    • M. E. Plissiti and C. Nikou. Combining shape, texture and intensity features for cell nuclei extraction in pap smear images. Pattern Recognition Letters, 32 (6): 838-853, 2011.
    • (2011) Pattern Recognition Letters , vol.32 , Issue.6 , pp. 838-853
    • Plissiti, M.E.1    Nikou, C.2
  • 23
    • 84988896904 scopus 로고    scopus 로고
    • Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis
    • R. Samala, H. P. Chan, L. Hadjiiski, and M. Helvie. Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis. In SPIE Medical Imaging, Volume: 9785, 2016.
    • (2016) SPIE Medical Imaging , vol.9785
    • Samala, R.1    Chan, H.P.2    Hadjiiski, L.3    Helvie, M.4
  • 24
    • 85014810517 scopus 로고    scopus 로고
    • Master's thesis, Vienna University of Technology, Faculty of Informatics
    • P. Seebock. Deep learning in medical image analysis. Master's thesis, Vienna University of Technology, Faculty of Informatics, 2015.
    • (2015) Deep Learning in Medical Image Analysis
    • Seebock, P.1
  • 26
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measure for classification task
    • M. Sokolova and G. Lapalme. A systematic analysis of performance measure for classification task. Information Processing and Management, 45 (4): 427-437, 2009.
    • (2009) Information Processing and Management , vol.45 , Issue.4 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 27
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9 (3): 293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.