-
1
-
-
84982889650
-
Major sensing proteins in pathogenic fungi: The hybrid histidine kinase family
-
Hérivaux A, So YS, Gastebois A, Latgé JP, Bouchara JP, Bahn YS, Papon N. 2016. Major sensing proteins in pathogenic fungi: the hybrid histidine kinase family. PLoS Pathog 12:e1005683. https://doi.org/10.1371/journal.ppat.1005683.
-
(2016)
Plos Pathog
, pp. 12
-
-
Hérivaux, A.1
So, Y.S.2
Gastebois, A.3
Latgé, J.P.4
Bouchara, J.P.5
Bahn, Y.S.6
Papon, N.7
-
2
-
-
84921340613
-
Bacterial histidine kinases as novel antibacterial drug targets
-
Bem AE, Velikova N, Pellicer MT, Baarlen Pv, Marina A, Wells JM. 2015. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 10:213–224. https://doi.org/10.1021/cb5007135.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 213-224
-
-
Bem, A.E.1
Velikova, N.2
Pellicer, M.T.3
Pv, B.4
Marina, A.5
Wells, J.M.6
-
3
-
-
84939508292
-
Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development
-
Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J. 2015. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. J Exp Bot 66:4913–4931. https://doi.org/10.1093/jxb/erv261.
-
(2015)
J Exp Bot
, vol.66
, pp. 4913-4931
-
-
Zdarska, M.1
Dobisová, T.2
Gelová, Z.3
Pernisová, M.4
Dabravolski, S.5
Hejátko, J.6
-
4
-
-
84924359139
-
Hybrid histidine kinases in pathogenic fungi
-
Defosse TA, Sharma A, Mondal AK, Dugé de Bernonville T, Latgé JP, Calderone R, Giglioli-Guivarc’h N, Courdavault V, Clastre M, Papon N. 2015. Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 95: 914–924. https://doi.org/10.1111/mmi.12911.
-
(2015)
Mol Microbiol
, vol.95
, pp. 914-924
-
-
Defosse, T.A.1
Sharma, A.2
Mondal, A.K.3
Dugé De Bernonville, T.4
Latgé, J.P.5
Calderone, R.6
Giglioli-Guivarc’h, N.7
Courdavault, V.8
Clastre, M.9
Papon, N.10
-
5
-
-
84970023707
-
Expansion of signal transduction pathways in fungi by extensive genome duplication
-
Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Álvarez MI, Avalos J, Bauer D, Benito EP, Benoit I, Burger G, Camino LP, Cánovas D, Cerdá-Olmedo E, Cheng JF, Domínguez A, Eliáš M, Eslava AP, Glaser F, Gutiérrez G, Heitman J, Henrissat B, Iturriaga EA, Lang BF, Lavín JL, Lee SC, Li W, Lindquist E, López-García S, Luque EM, Marcos AT, Martin J, McCluskey K, Medina HR, Miralles-Durán A, Miyazaki A, Muñoz-Torres E, Oguiza JA, Ohm RA, Olmedo M, Orejas M, Ortiz-Castellanos L, Pisabarro AG, Rodríguez-Romero J, Ruiz-Herrera J, Ruiz-Vázquez R, Sanz C, Schackwitz W, et al. 2016. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol 26:1577–1584. https://doi.org/10.1016/j.cub.2016.04.038.
-
(2016)
Curr Biol
, vol.26
, pp. 1577-1584
-
-
Corrochano, L.M.1
Kuo, A.2
Marcet-Houben, M.3
Polaino, S.4
Salamov, A.5
Villalobos-Escobedo, J.M.6
Grimwood, J.7
Álvarez, M.I.8
Avalos, J.9
Bauer, D.10
Benito, E.P.11
Benoit, I.12
Burger, G.13
Camino, L.P.14
Cánovas, D.15
Cerdá-Olmedo, E.16
Cheng, J.F.17
Domínguez, A.18
Eliáš, M.19
Eslava, A.P.20
Glaser, F.21
Gutiérrez, G.22
Heitman, J.23
Henrissat, B.24
Iturriaga, E.A.25
Lang, B.F.26
Lavín, J.L.27
Lee, S.C.28
Li, W.29
Lindquist, E.30
López-García, S.31
Luque, E.M.32
Marcos, A.T.33
Martin, J.34
McCluskey, K.35
Medina, H.R.36
Miralles-Durán, A.37
Miyazaki, A.38
Muñoz-Torres, E.39
Oguiza, J.A.40
Ohm, R.A.41
Olmedo, M.42
Orejas, M.43
Ortiz-Castellanos, L.44
Pisabarro, A.G.45
Rodríguez-Romero, J.46
Ruiz-Herrera, J.47
Ruiz-Vázquez, R.48
Sanz, C.49
Schackwitz, W.50
more..
-
6
-
-
84891752209
-
MycoCosm portal: Gearing up for 1000 fungal genomes
-
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I. 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704. https://doi.org/10.1093/nar/gkt1183.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D699-D704
-
-
Grigoriev, I.V.1
Nikitin, R.2
Haridas, S.3
Kuo, A.4
Ohm, R.5
Otillar, R.6
Riley, R.7
Salamov, A.8
Zhao, X.9
Korzeniewski, F.10
Smirnova, T.11
Nordberg, H.12
Dubchak, I.13
Shabalov, I.14
-
7
-
-
84979859948
-
Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants
-
Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, LaButti KM, Lindquist EA, Yee Ngan C, Ohm RA, Salamov AA, Grigoriev IV, Spatafora JW, Berbee ML. 2015. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol 7:1590–1601. https://doi.org/10.1093/gbe/evv090.
-
(2015)
Genome Biol Evol
, vol.7
, pp. 1590-1601
-
-
Chang, Y.1
Wang, S.2
Sekimoto, S.3
Aerts, A.L.4
Choi, C.5
Clum, A.6
Labutti, K.M.7
Lindquist, E.A.8
Yee Ngan, C.9
Ohm, R.A.10
Salamov, A.A.11
Grigoriev, I.V.12
Spatafora, J.W.13
Berbee, M.L.14
-
8
-
-
33750329972
-
Reconstructing the early evolution of Fungi using a six-gene phylogeny
-
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822. https://doi.org/10.1038/nature05110.
-
(2006)
Nature
, vol.443
, pp. 818-822
-
-
James, T.Y.1
Kauff, F.2
Schoch, C.L.3
Matheny, P.B.4
Hofstetter, V.5
Cox, C.J.6
Celio, G.7
Gueidan, C.8
Fraker, E.9
Miadlikowska, J.10
Lumbsch, H.T.11
Rauhut, A.12
Reeb, V.13
Arnold, A.E.14
Amtoft, A.15
Stajich, J.E.16
Hosaka, K.17
Sung, G.H.18
Johnson, D.19
O’Rourke, B.20
Crockett, M.21
Binder, M.22
Curtis, J.M.23
Slot, J.C.24
Wang, Z.25
Wilson, A.W.26
Schüssler, A.27
Longcore, J.E.28
O’Donnell, K.29
Mozley-Standridge, S.30
Porter, D.31
Letcher, P.M.32
Powell, M.J.33
Taylor, J.W.34
White, M.M.35
Griffith, G.W.36
Davies, D.R.37
Humber, R.A.38
Morton, J.B.39
Sugiyama, J.40
Rossman, A.Y.41
Rogers, J.D.42
Pfister, D.H.43
Hewitt, D.44
Hansen, K.45
Hambleton, S.46
Shoemaker, R.A.47
Kohlmeyer, J.48
Volkmann-Kohlmeyer, B.49
Spotts, R.A.50
more..
-
9
-
-
84992209034
-
A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data
-
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. https://doi.org/10.3852/16-042.
-
(2016)
Mycologia
, vol.108
, pp. 1028-1046
-
-
Spatafora, J.W.1
Chang, Y.2
Benny, G.L.3
Lazarus, K.4
Smith, M.E.5
Berbee, M.L.6
Bonito, G.7
Corradi, N.8
Grigoriev, I.9
Gryganskyi, A.10
James, T.Y.11
O’Donnell, K.12
Roberson, R.W.13
Taylor, T.N.14
Uehling, J.15
Vilgalys, R.16
White, M.M.17
Stajich, J.E.18
-
10
-
-
0347694805
-
Whole-genome analysis of two-component signal transduction genes in fungal pathogens
-
Catlett NL, Yoder OC, Turgeon BG. 2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161. https://doi.org/10.1128/EC.2.6.1151-1161.2003.
-
(2003)
Eukaryot Cell
, vol.2
, pp. 1151-1161
-
-
Catlett, N.L.1
Yoder, O.C.2
Turgeon, B.G.3
-
11
-
-
84896827243
-
Dual-histidine kinases in basidiomycete fungi
-
Lavín JL, Sarasola-Puente V, Ramírez L, Pisabarro AG, Oguiza JA. 2014. Dual-histidine kinases in basidiomycete fungi. C R Biol 337:111–116. https://doi.org/10.1016/j.crvi.2013.12.007.
-
(2014)
C R Biol
, vol.337
, pp. 111-116
-
-
Lavín, J.L.1
Sarasola-Puente, V.2
Ramírez, L.3
Pisabarro, A.G.4
Oguiza, J.A.5
-
12
-
-
84963819410
-
Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea
-
Foo E, McAdam EL, Weller JL, Reid JB. 2016. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J Exp Bot 67:2413–2424. https://doi.org/10.1093/jxb/erw047.
-
(2016)
J Exp Bot
, vol.67
, pp. 2413-2424
-
-
Foo, E.1
McAdam, E.L.2
Weller, J.L.3
Reid, J.B.4
-
13
-
-
79960966055
-
Altered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants
-
de los Santos RT, Vierheilig H, Ocampo JA, Garrido JM. 2011. Altered pattern of arbuscular mycorrhizal formation in tomato ethylene mutants. Plant Signal Behav 6:755–758. https://doi.org/10.4161/psb.6.5.15415.
-
(2011)
Plant Signal Behav
, vol.6
, pp. 755-758
-
-
De Los Santos, R.T.1
Vierheilig, H.2
Ocampo, J.A.3
Garrido, J.M.4
-
14
-
-
84959527884
-
Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence
-
Chanclud E, Kisiala A, Emery NR, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB. 2016. Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog 12: e1005457. https://doi.org/10.1371/journal.ppat.1005457.
-
(2016)
Plos Pathog
, vol.12
, pp. 12
-
-
Chanclud, E.1
Kisiala, A.2
Emery, N.R.3
Chalvon, V.4
Ducasse, A.5
Romiti-Michel, C.6
Gravot, A.7
Kroj, T.8
Morel, J.B.9
-
15
-
-
84969837187
-
Shoot-and root-borne cytokinin influences arbuscular mycorrhizal symbiosis
-
Cosme M, Ramireddy E, Franken P, Schmülling T, Wurst S. 2016. Shoot-and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza 26:709–720. https://doi.org/10.1007/s00572-016-0706-3.
-
(2016)
Mycorrhiza
, vol.26
, pp. 709-720
-
-
Cosme, M.1
Ramireddy, E.2
Franken, P.3
Schmülling, T.4
Wurst, S.5
-
16
-
-
84920830665
-
The CRE1 cytokinin pathway is differentially recruited depending on Medicago truncatula root environments and negatively regulates resistance to a pathogen
-
Laffont C, Rey T, André O, Novero M, Kazmierczak T, Debellé F, Bonfante P, Jacquet C, Frugier F. 2015. The CRE1 cytokinin pathway is differentially recruited depending on Medicago truncatula root environments and negatively regulates resistance to a pathogen. PLoS One 10:e0116819. https://doi.org/10.1371/journal.pone.0116819.
-
(2015)
Plos One
, pp. 10
-
-
Laffont, C.1
Rey, T.2
Ré, O.3
Novero, M.4
Kazmierczak, T.5
Debellé, F.6
Bonfante, P.7
Jacquet, C.8
Frugier, F.9
-
17
-
-
85027949423
-
Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea
-
Hinsch J, Galuszka P, Tudzynski P. 2016. Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol 211:980–992. https://doi.org/10.1111/nph.13960.
-
(2016)
New Phytol
, vol.211
, pp. 980-992
-
-
Hinsch, J.1
Galuszka, P.2
Tudzynski, P.3
-
18
-
-
33947497270
-
Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis
-
Wang W, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB. 2006. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18:3429–3442. https://doi.org/10.1105/tpc.106.044537.
-
(2006)
Plant Cell
, vol.18
, pp. 3429-3442
-
-
Wang, W.1
Esch, J.J.2
Shiu, S.H.3
Agula, H.4
Binder, B.M.5
Chang, C.6
Patterson, S.E.7
Bleecker, A.B.8
-
19
-
-
84904916190
-
Ecological functions of zoosporic hyperparasites
-
Gleason FH, Lilje O, Marano AV, Sime-Ngando T, Sullivan BK, Kirchmair M, Neuhauser S. 2014. Ecological functions of zoosporic hyperparasites. Front Microbiol 5:244. https://doi.org/10.3389/fmicb.2014.00244.
-
(2014)
Front Microbiol
, vol.5
, pp. 244
-
-
Gleason, F.H.1
Lilje, O.2
Marano, A.V.3
Sime-Ngando, T.4
Sullivan, B.K.5
Kirchmair, M.6
Neuhauser, S.7
-
20
-
-
84871975473
-
Studies of physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution
-
Yasumura Y, Pierik R, Fricker MD, Voesenek LA, Harberd NP. 2012. Studies of physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. Plant J 72:947–959. https://doi.org/10.1111/tpj.12005.
-
(2012)
Plant J
, vol.72
, pp. 947-959
-
-
Yasumura, Y.1
Pierik, R.2
Fricker, M.D.3
Voesenek, L.A.4
Harberd, N.P.5
-
21
-
-
84925485726
-
Appearance and elaboration of the ethylene receptor family during land plant evolution
-
Gallie DR. 2015. Appearance and elaboration of the ethylene receptor family during land plant evolution. Plant Mol Biol 87:521–539. https://doi.org/10.1007/s11103-015-0296-z.
-
(2015)
Plant Mol Biol
, vol.87
, pp. 521-539
-
-
Gallie, D.R.1
-
22
-
-
34248160894
-
Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain
-
Heyl A, Wulfetange K, Pils B, Nielsen N, Romanov GA, Schmülling T. 2007. Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain. BMC Evol Biol 7:62. https://doi.org/10.1186/1471-2148-7-62.
-
(2007)
BMC Evol Biol
, vol.7
, pp. 62
-
-
Heyl, A.1
Wulfetange, K.2
Pils, B.3
Nielsen, N.4
Romanov, G.A.5
Schmülling, T.6
-
23
-
-
84899880091
-
A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants
-
Gruhn N, Halawa M, Snel B, Seidl MF, Heyl A. 2014. A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants. Plant Physiol 165: 227–237. https://doi.org/10.1104/pp.113.228080.
-
(2014)
Plant Physiol
, vol.165
, pp. 227-237
-
-
Gruhn, N.1
Halawa, M.2
Snel, B.3
Seidl, M.F.4
Heyl, A.5
-
24
-
-
3843062530
-
Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa)
-
Hoff JA, Klopfenstein NB, McDonald GI, Tonn JR, Kim M-S, Zambino PJ, Hessburg PF, Rogers JD, Peever TL, Carris LM. 2004. Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Forest Pathol 34:255–271. https://doi.org/10.1111/j.1439-0329.2004.00367.x.
-
(2004)
Forest Pathol
, vol.34
, pp. 255-271
-
-
Hoff, J.A.1
Klopfenstein, N.B.2
McDonald, G.I.3
Tonn, J.R.4
Kim, M.-S.5
Zambino, P.J.6
Hessburg, P.F.7
Rogers, J.D.8
Peever, T.L.9
Carris, L.M.10
-
25
-
-
84860744667
-
Cytokinins—recent news and views of evolutionally old molecules
-
Spíchal L. 2012. Cytokinins—recent news and views of evolutionally old molecules. Functional Plant Biol 39:267–284. https://doi.org/10.1071/FP11276.
-
(2012)
Functional Plant Biol
, vol.39
, pp. 267-284
-
-
Spíchal, L.1
-
26
-
-
0033638561
-
A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root
-
Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y. 2000. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943. https://doi.org/10.1101/gad.189200.
-
(2000)
Genes Dev
, vol.14
, pp. 2938-2943
-
-
Mähönen, A.P.1
Bonke, M.2
Kauppinen, L.3
Riikonen, M.4
Benfey, P.N.5
Helariutta, Y.6
-
27
-
-
84982953266
-
Ethylene regulates the physiology of the cyanobacterium Synechocystis sp. PCC 6803 via an ethylene receptor
-
Lacey RF, Binder BM. 2016. Ethylene regulates the physiology of the cyanobacterium Synechocystis sp. PCC 6803 via an ethylene receptor. Plant Physiol 171:2798–2809. https://doi.org/10.1104/pp.16.00602.
-
(2016)
Plant Physiol
, vol.171
, pp. 2798-2809
-
-
Lacey, R.F.1
Binder, B.M.2
-
28
-
-
0036237727
-
Coevolution of roots and mycorrhizas of land plants
-
Brundrett MC. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304. https://doi.org/10.1046/j.1469 -8137.2002.00397.x.
-
(2002)
New Phytol
, vol.154
, pp. 275-304
-
-
Brundrett, M.C.1
-
29
-
-
84940467359
-
Symbiotic options for the conquest of land
-
Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI. 2015. Symbiotic options for the conquest of land. Trends Ecol Evol 30: 477–486. https://doi.org/10.1016/j.tree.2015.05.007.
-
(2015)
Trends Ecol Evol
, vol.30
, pp. 477-486
-
-
Field, K.J.1
Pressel, S.2
Duckett, J.G.3
Rimington, W.R.4
Bidartondo, M.I.5
-
30
-
-
84875852997
-
The family structure of the Mucorales: A synoptic revision based on comprehensive multigene-genealogies
-
Hoffmann K, Pawłowska J, Walther G, Wrzosek M, de Hoog GS, Benny GL, Kirk PM, Voigt K. 2013. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 30: 57–76. https://doi.org/10.3767/003158513X666259.
-
(2013)
Persoonia
, vol.30
, pp. 57-76
-
-
Hoffmann, K.1
Pawłowska, J.2
Walther, G.3
Wrzosek, M.4
De Hoog, G.S.5
Benny, G.L.6
Kirk, P.M.7
Voigt, K.8
-
31
-
-
84890285092
-
Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
-
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JP, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122. https://doi.org/10.1073/pnas.1313452110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 20117-20122
-
-
Tisserant, E.1
Malbreil, M.2
Kuo, A.3
Kohler, A.4
Symeonidi, A.5
Balestrini, R.6
Charron, P.7
Duensing, N.8
Frei Dit Frey, N.9
Gianinazzi-Pearson, V.10
Gilbert, L.B.11
Handa, Y.12
Herr, J.R.13
Hijri, M.14
Koul, R.15
Kawaguchi, M.16
Krajinski, F.17
Lammers, P.J.18
Masclaux, F.G.19
Murat, C.20
Morin, E.21
Ndikumana, S.22
Pagni, M.23
Petitpierre, D.24
Requena, N.25
Rosikiewicz, P.26
Riley, R.27
Saito, K.28
San Clemente, H.29
Shapiro, H.30
Van Tuinen, D.31
Bécard, G.32
Bonfante, P.33
Paszkowski, U.34
Shachar-Hill, Y.Y.35
Tuskan, G.A.36
Young, J.P.37
Sanders, I.R.38
Henrissat, B.39
Rensing, S.A.40
Grigoriev, I.V.41
Corradi, N.42
Roux, C.43
Martin, F.44
more..
-
32
-
-
84882621521
-
Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia
-
James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553. https://doi.org/10.1016/j.cub.2013.06.057.
-
(2013)
Curr Biol
, vol.23
, pp. 1548-1553
-
-
James, T.Y.1
Pelin, A.2
Bonen, L.3
Ahrendt, S.4
Sain, D.5
Corradi, N.6
Stajich, J.E.7
-
33
-
-
84878680711
-
Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data
-
Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D, Rodriguez D, Eastman JM, Richards-Hrdlicka K, Joneson S, Jenkinson TS, Longcore JE, Parra Olea G, Toledo LF, Arellano ML, Medina EM, Restrepo S, Flechas SV, Berger L, Briggs CJ, Stajich JE. 2013. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci U S A 110:9385–9390. https://doi.org/10.1073/pnas.1300130110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 9385-9390
-
-
Rosenblum, E.B.1
James, T.Y.2
Zamudio, K.R.3
Poorten, T.J.4
Ilut, D.5
Rodriguez, D.6
Eastman, J.M.7
Richards-Hrdlicka, K.8
Joneson, S.9
Jenkinson, T.S.10
Longcore, J.E.11
Parra Olea, G.12
Toledo, L.F.13
Arellano, M.L.14
Medina, E.M.15
Restrepo, S.16
Flechas, S.V.17
Berger, L.18
Briggs, C.J.19
Stajich, J.E.20
more..
-
34
-
-
84964329945
-
A survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy
-
Tang N, San Clemente H, Roy S, Bécard G, Zhao B, Roux C. 2016. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy. Front Microbiol 7:233. https://doi.org/10.3389/fmicb.2016.00233.
-
(2016)
Front Microbiol
, vol.7
, pp. 233
-
-
Tang, N.1
San Clemente, H.2
Roy, S.3
Bécard, G.4
Zhao, B.5
Roux, C.6
-
35
-
-
85010441744
-
Genome sequence of Spizellomyces punctatus
-
Russ C, Lang BF, Chen Z, Gujja S, Shea T, Zeng Q, Young S, Cuomo CA, Nusbaum C. 2016. Genome sequence of Spizellomyces punctatus. Genome Announc 4:e00849-16. https://doi.org/10.1128/genomeA.00849-16.
-
(2016)
Genome Announc
, vol.4
-
-
Russ, C.1
Lang, B.F.2
Chen, Z.3
Gujja, S.4
Shea, T.5
Zeng, Q.6
Young, S.7
Cuomo, C.A.8
Nusbaum, C.9
|