메뉴 건너뛰기




Volumn 25, Issue 1, 2017, Pages 1-54

Particle swarm optimization for single objective continuous space problems: A review

Author keywords

Constrained optimization; Invariance; Local convergence; Parameter selection; Particle swarm optimization; Stability analysis; Topology

Indexed keywords

CONSTRAINED OPTIMIZATION; INVARIANCE; OPTIMIZATION; TOPOLOGY;

EID: 85014433250     PISSN: 10636560     EISSN: 15309304     Source Type: Journal    
DOI: 10.1162/EVCO_r_00180     Document Type: Review
Times cited : (606)

References (170)
  • 1
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • Agrafiotis, D. K., and Cedeno, W. (2002). Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry, 45 (5): 1098–1107.
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 2
    • 67349261353 scopus 로고    scopus 로고
    • Chaos embedded particle swarm optimization algorithms. Chaos
    • Alatas, B., Akin, E., and Ozer, A. B. (2009). Chaos embedded particle swarm optimization algorithms. Chaos, Solutions and Fractals, 40 (4): 1715–1734.
    • (2009) Solutions and Fractals , vol.40 , Issue.4 , pp. 1715-1734
    • Alatas, B.1    Akin, E.2    Ozer, A.B.3
  • 3
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert, R., and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74 (1): 47–97.
    • (2002) Reviews of Modern Physics , vol.74 , Issue.1 , pp. 47-97
    • Albert, R.1    Barabási, A.-L.2
  • 4
    • 84919713045 scopus 로고    scopus 로고
    • Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences
    • Berlin: Springer
    • Angeline, P. J. (1998). Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In Evolutionary Programming VII, pp. 601–610. Berlin: Springer.
    • (1998) Evolutionary Programming VII , pp. 601-610
    • Angeline, P.J.1
  • 6
    • 51049116645 scopus 로고    scopus 로고
    • A new and improved version of particle swarm optimization algorithm with global–local best parameters
    • Arumugam, M. S., Rao, M., and Chandramohan, A. (2008). A new and improved version of particle swarm optimization algorithm with global–local best parameters. Knowledge and Information Systems, 16 (3): 331–357.
    • (2008) Knowledge and Information Systems , vol.16 , Issue.3 , pp. 331-357
    • Arumugam, M.S.1    Rao, M.2    Chandramohan, A.3
  • 7
    • 53749100262 scopus 로고    scopus 로고
    • Anovel and effective particle swarm optimization like algorithm with extrapolation technique
    • Arumugam, M. S., Rao, M.V. C., and Tan, A.W. C. (2009). Anovel and effective particle swarm optimization like algorithm with extrapolation technique. Applied Soft Computing, 9 (1): 308–320.
    • (2009) Applied Soft Computing , vol.9 , Issue.1 , pp. 308-320
    • Arumugam, M.S.1    Rao, M.V.C.2    Tan, A.W.C.3
  • 9
    • 0019550047 scopus 로고
    • Convergence of a random optimization method for constrained optimization problems
    • Baba, N. (1981). Convergence of a random optimization method for constrained optimization problems. Journal of Optimization Theory and Applications, 33 (4): 451–461.
    • (1981) Journal of Optimization Theory and Applications , vol.33 , Issue.4 , pp. 451-461
    • Baba, N.1
  • 10
    • 35448934039 scopus 로고    scopus 로고
    • A review of particle swarm optimization. Part I: Background and development
    • Banks, A., Vincent, J., and Anyakoha, C. (2007). A review of particle swarm optimization. Part I: Background and development. Natural Computing, 6 (4): 467–484.
    • (2007) Natural Computing , vol.6 , Issue.4 , pp. 467-484
    • Banks, A.1    Vincent, J.2    Anyakoha, C.3
  • 11
    • 39049136085 scopus 로고    scopus 로고
    • A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications
    • Banks, A., Vincent, J., and Anyakoha, C. (2008). A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing, 7 (1): 109–124.
    • (2008) Natural Computing , vol.7 , Issue.1 , pp. 109-124
    • Banks, A.1    Vincent, J.2    Anyakoha, C.3
  • 12
    • 0037592480 scopus 로고    scopus 로고
    • Evolution strategies—A comprehensive introduction
    • Beyer, H.-G., and Schwefel, H.-P. (2002). Evolution strategies—A comprehensive introduction. Natural Computing, 1 (1): 3–52.
    • (2002) Natural Computing , vol.1 , Issue.1 , pp. 3-52
    • Beyer, H.-G.1    Schwefel, H.-P.2
  • 13
    • 14744267475 scopus 로고    scopus 로고
    • On the convergence of a population-based global optimization algorithm
    • Birbil, S. I., Fang, S.-C., and Sheu, R.-L. (2004). On the convergence of a population-based global optimization algorithm. Journal of Global Optimization, 30 (2–3): 301–318.
    • (2004) Journal of Global Optimization , vol.30 , Issue.23 , pp. 301-318
    • Birbil, S.I.1    Fang, S.-C.2    Sheu, R.-L.3
  • 14
    • 84861829465 scopus 로고    scopus 로고
    • A study of collapse in bare bones particle swarm optimization
    • Blackwell, T. (2012). A study of collapse in bare bones particle swarm optimization. IEEE Transactions on Evolutionary Computation, 16 (3): 354–372.
    • (2012) IEEE Transactions on Evolutionary Computation , vol.16 , Issue.3 , pp. 354-372
    • Blackwell, T.1
  • 16
    • 84923773837 scopus 로고    scopus 로고
    • A hybrid particle swarm with a timeadaptive topology for constrained optimization
    • Bonyadi, M. R., Li, X., and Michalewicz, Z. (2014). A hybrid particle swarm with a timeadaptive topology for constrained optimization. Swarm and Evolutionary Computation, 18: 22–37.
    • (2014) Swarm and Evolutionary Computation , vol.18 , pp. 22-37
    • Bonyadi, M.R.1    Li, X.2    Michalewicz, Z.3
  • 17
    • 84866867194 scopus 로고    scopus 로고
    • A fast particle swarm optimization algorithm for the multidimensional knapsack problem
    • Bonyadi, M. R., and Michalewicz, Z. (2012). A fast particle swarm optimization algorithm for the multidimensional knapsack problem. In IEEE Congress on Evolutionary Computation, pp. 1–8.
    • (2012) In IEEE Congress on Evolutionary Computation , pp. 1-8
    • Bonyadi, M.R.1    Michalewicz, Z.2
  • 18
    • 84926276954 scopus 로고    scopus 로고
    • A locally convergent rotationally invariant particle swarm optimization algorithm
    • Bonyadi, M. R., and Michalewicz, Z. (2014a). A locally convergent rotationally invariant particle swarm optimization algorithm. Swarm Intelligence, 8 (3): 159–198.
    • (2014) Swarm Intelligence , vol.8 , Issue.3 , pp. 159-198
    • Bonyadi, M.R.1    Michalewicz, Z.2
  • 19
    • 84908582196 scopus 로고    scopus 로고
    • Locating potentially disjoint feasible regions of a search space with a particle swarm optimizer
    • In K. Deb and R. Datta (Eds.), Berlin: Springer
    • Bonyadi, M. R., and Michalewicz, Z. (2014b). Locating potentially disjoint feasible regions of a search space with a particle swarm optimizer. In K. Deb and R. Datta (Eds.), Evolutionary constrained optimization, pp. 205–230. Berlin: Springer.
    • (2014) Evolutionary Constrained Optimization , pp. 205-230
    • Bonyadi, M.R.1    Michalewicz, Z.2
  • 20
  • 22
    • 84906789114 scopus 로고    scopus 로고
    • An analysis of the velocity updating rule of the particle swarm optimization algorithm
    • Bonyadi, M. R., Michalewicz, Z., and Li, X. (2014). An analysis of the velocity updating rule of the particle swarm optimization algorithm. Journal of Heuristics, 20 (4): 417–452.
    • (2014) Journal of Heuristics , vol.20 , Issue.4 , pp. 417-452
    • Bonyadi, M.R.1    Michalewicz, Z.2    Li, X.3
  • 23
    • 84973395020 scopus 로고    scopus 로고
    • Analysis of stability, local convergence, and transformation sensitivity of a variant of particle swarm optimization algorithm
    • Bonyadi, M., and Michalewicz, Z. (2016). Analysis of stability, local convergence, and transformation sensitivity of a variant of particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 20 (3): 370–385.
    • (2016) IEEE Transactions on Evolutionary Computation , vol.20 , Issue.3 , pp. 370-385
    • Bonyadi, M.1    Michalewicz, Z.2
  • 25
    • 84921395821 scopus 로고    scopus 로고
    • Beyond the edge of feasibility: Analysis of bottlenecks
    • In G. Dick, W. Browne, P. Whigham, M. Zhang, L. Bui, H. Ishibuchi, Y. Jin, et al. (Eds.), Berlin: Springer
    • Bonyadi, M. R., Michalewicz, Z., andWagner, M. (2014). Beyond the edge of feasibility: Analysis of bottlenecks. In G. Dick, W. Browne, P. Whigham, M. Zhang, L. Bui, H. Ishibuchi, Y. Jin, et al. (Eds.), Simulated evolution and learning, pp. 431–442. Berlin: Springer.
    • (2014) Simulated Evolution and Learning , pp. 431-442
    • Bonyadi, M.R.1    Michalewicz, Z.2    Andwagner, M.3
  • 27
    • 78650193735 scopus 로고    scopus 로고
    • Real-valued multimodal fitness landscape characterization for evolution
    • In K.Wong, B. Mendis, and A. Bouzerdoum (Eds.), Berlin: Springer
    • Caamao, P., Prieto, A., Becerra, J., Bellas, F., and Duro, R. (2010). Real-valued multimodal fitness landscape characterization for evolution. In K.Wong, B. Mendis, and A. Bouzerdoum (Eds.), Neural information processing: Theory and algorithms, pp. 567–574. Berlin: Springer.
    • (2010) Neural Information Processing: Theory and Algorithms , pp. 567-574
    • Caamao, P.1    Prieto, A.2    Becerra, J.3    Bellas, F.4    Duro, R.5
  • 28
    • 77957879636 scopus 로고    scopus 로고
    • Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization
    • Campana, E., Fasano, G., and Pinto, A. (2010). Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization. Journal of Global Optimization, 48 (3): 347–397.
    • (2010) Journal of Global Optimization , vol.48 , Issue.3 , pp. 347-397
    • Campana, E.1    Fasano, G.2    Pinto, A.3
  • 29
    • 0004113854 scopus 로고    scopus 로고
    • An off-the-shelf PSO
    • Indianapolis, Indiana: Purdue School of Engineering and Technology
    • Carlisle, A., and Dozier, G. (2001). An off-the-shelf PSO. In Workshop on Particle Swarm Optimization, pp. 1–6. Indianapolis, Indiana: Purdue School of Engineering and Technology.
    • (2001) Workshop on Particle Swarm Optimization , pp. 1-6
    • Carlisle, A.1    Dozier, G.2
  • 31
    • 84861191799 scopus 로고    scopus 로고
    • Aself-learning particle swarmoptimizer for global optimization problems. IEEE Transactions on Systems, Man, and Cybernetics
    • Changhe, L., Shengxiang, Y., and Trung Thanh, N. (2012). Aself-learning particle swarmoptimizer for global optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42 (3): 627–646.
    • (2012) Part B: Cybernetics , vol.42 , Issue.3 , pp. 627-646
    • Changhe, L.1    Shengxiang, Y.2    Trung Thanh, N.3
  • 33
    • 23344434757 scopus 로고    scopus 로고
    • Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
    • Chatterjee, A., and Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research, 33 (3): 859–871.
    • (2006) Computers and Operations Research , vol.33 , Issue.3 , pp. 859-871
    • Chatterjee, A.1    Siarry, P.2
  • 35
    • 53749099091 scopus 로고    scopus 로고
    • Particle swarm optimization with adaptive population size and its application
    • Chen, D. B., and Zhao, C. X. (2009). Particle swarm optimization with adaptive population size and its application. Applied Soft Computing, 9 (1): 39–48.
    • (2009) Applied Soft Computing , vol.9 , Issue.1 , pp. 39-48
    • Chen, D.B.1    Zhao, C.X.2
  • 36
    • 84896729889 scopus 로고    scopus 로고
    • A generalized theoretical deterministic particle swarm model
    • Cleghorn, C. W., and Engelbrecht, A. P. (2014a). A generalized theoretical deterministic particle swarm model. Swarm intelligence, 8 (1): 35–59.
    • (2014) Swarm Intelligence , vol.8 , Issue.1 , pp. 35-59
    • Cleghorn, C.W.1    Engelbrecht, A.P.2
  • 38
    • 84921737766 scopus 로고    scopus 로고
    • Particle swarm convergence: Standardized analysis and topological influence
    • In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, and T. Stützle (Eds.), Berlin: Springer
    • Cleghorn, C. W., and Engelbrecht, A. P. (2014c). Particle swarm convergence: Standardized analysis and topological influence. In M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, and T. Stützle (Eds.), Swarm intelligence, pp. 134–145. Berlin: Springer.
    • (2014) Swarm Intelligence , pp. 134-145
    • Cleghorn, C.W.1    Engelbrecht, A.P.2
  • 39
    • 84938983841 scopus 로고    scopus 로고
    • Particle swarmvariants: Standardized convergence analysis
    • Cleghorn, C.W., and Engelbrecht, A. P. (2015). Particle swarmvariants: Standardized convergence analysis. Swarm Intelligence, 9 (2): 177–203.
    • (2015) Swarm Intelligence , vol.9 , Issue.2 , pp. 177-203
    • Cleghorn, C.W.1    Engelbrecht, A.P.2
  • 40
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization
    • Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In IEEE Congress on Evolutionary Computation, pp. 1951–1957.
    • (1999) In IEEE Congress on Evolutionary Computation , pp. 1951-1957
    • Clerc, M.1
  • 42
    • 84865374057 scopus 로고    scopus 로고
    • Standard particle swarm optimisation from 2006 to 2011
    • Clerc, M. (2011). Standard particle swarm optimisation from 2006 to 2011. Technical Report hal-00764996.
    • (2011) Technical Report Hal-00764996
    • Clerc, M.1
  • 43
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc, M., and Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6 (1): 58–73.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 44
    • 84901406150 scopus 로고    scopus 로고
    • A comparison of constraint-handling methods for the application of particle swarm optimization to constrained nonlinear optimization problems
    • Coath, G., and Halgamuge, S. K. (2003). A comparison of constraint-handling methods for the application of particle swarm optimization to constrained nonlinear optimization problems. In IEEE Congress on Evolutionary Computation, pp. 2419–2425.
    • (2003) In IEEE Congress on Evolutionary Computation , pp. 2419-2425
    • Coath, G.1    Halgamuge, S.K.2
  • 45
    • 0034159170 scopus 로고    scopus 로고
    • Use of a self-adaptive penalty approach for engineering optimization problems
    • Coello Coello, C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41 (2): 113–127.
    • (2000) Computers in Industry , vol.41 , Issue.2 , pp. 113-127
    • Coello Coello, C.1
  • 46
    • 67349115179 scopus 로고    scopus 로고
    • Performance evaluation of tribes: An adaptive particle swarm optimization algorithm
    • Cooren, Y., Clerc, M., and Siarry, P. (2009). Performance evaluation of tribes: An adaptive particle swarm optimization algorithm. Swarm Intelligence, 3 (2): 149–178.
    • (2009) Swarm Intelligence , vol.3 , Issue.2 , pp. 149-178
    • Cooren, Y.1    Clerc, M.2    Siarry, P.3
  • 47
    • 63849340354 scopus 로고    scopus 로고
    • On stability and convergence of the population-dynamics in differential evolution
    • Dasgupta, S., Das, S., Biswas, A., and Abraham, A. (2009). On stability and convergence of the population-dynamics in differential evolution. AI Communications, 22 (1): 1–20.
    • (2009) AI Communications , vol.22 , Issue.1 , pp. 1-20
    • Dasgupta, S.1    Das, S.2    Biswas, A.3    Abraham, A.4
  • 48
    • 0001829246 scopus 로고
    • Introduction to grey system theory
    • Deng, J.-L. (1989). Introduction to grey system theory. The Journal of Grey System, 1 (1): 1–24.
    • (1989) The Journal of Grey System , vol.1 , Issue.1 , pp. 1-24
    • Deng, J.-L.1
  • 49
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as amethodology for comparing evolutionary and swarm intelligence algorithms
    • Derrac, J., García, S., Molina, D., and Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as amethodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1 (1): 3–18.
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 50
    • 0020707458 scopus 로고
    • Expected number of steps of a random optimization method
    • Dorea, C. (1983). Expected number of steps of a random optimization method. Journal of Optimization Theory and Applications, 39 (2): 165–171.
    • (1983) Journal of Optimization Theory and Applications , vol.39 , Issue.2 , pp. 165-171
    • Dorea, C.1
  • 53
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • Eberhart, R. C., and Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In IEEE Congress on Evolutionary Computation, pp. 84–88.
    • (2000) In IEEE Congress on Evolutionary Computation , pp. 84-88
    • Eberhart, R.C.1    Shi, Y.2
  • 55
    • 0002082910 scopus 로고    scopus 로고
    • Theory of evolutionary algorithms: A bird’s eye view
    • Eiben, A. E., and Rudolph, G. (1999). Theory of evolutionary algorithms: A bird’s eye view. Theoretical Computer Science, 229 (1): 3–9.
    • (1999) Theoretical Computer Science , vol.229 , Issue.1 , pp. 3-9
    • Eiben, A.E.1    Rudolph, G.2
  • 58
    • 70449627168 scopus 로고    scopus 로고
    • Adaptive clubs-based particle swarm optimization
    • Emara, H. M. (2009). Adaptive clubs-based particle swarm optimization. In American Control Conference, pp. 5628–5634.
    • (2009) In American Control Conference , pp. 5628-5634
    • Emara, H.M.1
  • 62
    • 84909582031 scopus 로고    scopus 로고
    • Convergence and stochastic stability analysis of particle swarm optimization variants with generic parameter distributions
    • García-Gonzalo, E., and Fernández-Martínez, J. L. (2014). Convergence and stochastic stability analysis of particle swarm optimization variants with generic parameter distributions. Applied Mathematics and Computation, 249: 286–302.
    • (2014) Applied Mathematics and Computation , vol.249 , pp. 286-302
    • García-Gonzalo, E.1    Fernández-Martínez, J.L.2
  • 63
    • 84857656487 scopus 로고    scopus 로고
    • An inertia-adaptive particle swarm system with particlemobility factor for improved global optimization
    • Ghosh, S., Das, S., Kundu, D., Suresh, K., Panigrahi, B. K., and Cui, Z. (2010). An inertia-adaptive particle swarm system with particlemobility factor for improved global optimization. Neural Computing and Applications, 21 (2): 237–250.
    • (2010) Neural Computing and Applications , vol.21 , Issue.2 , pp. 237-250
    • Ghosh, S.1    Das, S.2    Kundu, D.3    Suresh, K.4    Panigrahi, B.K.5    Cui, Z.6
  • 65
    • 0013079714 scopus 로고    scopus 로고
    • Invariance, self-adaptation and correlated mutations in evolution strategies
    • Hansen, N. (2000). Invariance, self-adaptation and correlated mutations in evolution strategies. In Parallel Problem Solving from Nature, pp. 355–364.
    • (2000) In Parallel Problem Solving from Nature , pp. 355-364
    • Hansen, N.1
  • 67
    • 0029722015 scopus 로고    scopus 로고
    • Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation
    • Hansen, N., and Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In IEEE Congress on Evolutionary Computation, pp. 312–317.
    • (1996) In IEEE Congress on Evolutionary Computation , pp. 312-317
    • Hansen, N.1    Ostermeier, A.2
  • 69
    • 80053567783 scopus 로고    scopus 로고
    • Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems
    • Hansen, N., Ros, R., Mauny, N., Schoenauer, M., and Auger, A. (2011). Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems. Applied Soft Computing, 11 (8): 5755–5769.
    • (2011) Applied Soft Computing , vol.11 , Issue.8 , pp. 5755-5769
    • Hansen, N.1    Ros, R.2    Mauny, N.3    Schoenauer, M.4    Auger, A.5
  • 70
    • 0036808673 scopus 로고    scopus 로고
    • From an individual to a population: An analysis of the first hitting time of population-based evolutionary algorithms
    • He, J., and Yao, X. (2002). From an individual to a population: An analysis of the first hitting time of population-based evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 6 (5): 495–511.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.5 , pp. 495-511
    • He, J.1    Yao, X.2
  • 71
    • 33750625354 scopus 로고    scopus 로고
    • An effective co-evolutionary particle swarm optimization for constrained engineering design problems
    • He, Q., and Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20 (1): 89–99.
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.1 , pp. 89-99
    • He, Q.1    Wang, L.2
  • 72
    • 84875717817 scopus 로고    scopus 로고
    • Experimental analysis of bound handling techniques in particle swarm optimization
    • Helwig, S., Branke, J., and Mostaghim, S. (2013). Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Transactions on Evolutionary Computation, 17 (2): 259–271.
    • (2013) IEEE Transactions on Evolutionary Computation , vol.17 , Issue.2 , pp. 259-271
    • Helwig, S.1    Branke, J.2    Mostaghim, S.3
  • 73
    • 34548775960 scopus 로고    scopus 로고
    • Particle swarm optimization in high-dimensional bounded search spaces
    • Helwig, S., and Wanka, R. (2007). Particle swarm optimization in high-dimensional bounded search spaces. In Swarm Intelligence Symposium, pp. 198–205.
    • (2007) In Swarm Intelligence Symposium , pp. 198-205
    • Helwig, S.1    Wanka, R.2
  • 74
    • 56449125793 scopus 로고    scopus 로고
    • Theoretical analysis of initial particle swarm behavior
    • Helwig, S., andWanka, R. (2008). Theoretical analysis of initial particle swarm behavior. In Parallel Problem Solving from Nature, pp. 889–898.
    • (2008) In Parallel Problem Solving from Nature , pp. 889-898
    • Helwig, S.1    Wanka, R.2
  • 75
    • 64049115867 scopus 로고    scopus 로고
    • Efficient population utilization strategy for particle swarm optimizer. IEEE Transactions on Systems, Man, and Cybernetics
    • Hsieh, S. T., Sun, T. Y., Liu, C. C., and Tsai, S. J. (2009). Efficient population utilization strategy for particle swarm optimizer. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39 (2): 444–456.
    • (2009) Part B: Cybernetics , vol.39 , Issue.2 , pp. 444-456
    • Hsieh, S.T.1    Sun, T.Y.2    Liu, C.C.3    Tsai, S.J.4
  • 76
    • 84863726256 scopus 로고    scopus 로고
    • An intelligent augmentation of particle swarm optimization with multiple adaptive methods
    • Hu, M., Wu, T., andWeir, J. D. (2012). An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Information Sciences, 213: 68–83.
    • (2012) Information Sciences , vol.213 , pp. 68-83
    • Hu, M.1    Wu, T.2    Andweir, J.D.3
  • 79
    • 80055064646 scopus 로고    scopus 로고
    • Example-based learning particle swarm optimization for continuous optimization
    • Huang, H., Qin, H., Hao, Z., and Lim, A. (2010). Example-based learning particle swarm optimization for continuous optimization. Information Sciences, 182 (1): 125–138.
    • (2010) Information Sciences , vol.182 , Issue.1 , pp. 125-138
    • Huang, H.1    Qin, H.2    Hao, Z.3    Lim, A.4
  • 80
    • 43049122113 scopus 로고    scopus 로고
    • Lower bounds for randomized direct search with isotropic sampling
    • Jägersküpper, J. (2008). Lower bounds for randomized direct search with isotropic sampling. Operations Research Letters, 36 (3): 327–332.
    • (2008) Operations Research Letters , vol.36 , Issue.3 , pp. 327-332
    • Jägersküpper, J.1
  • 81
    • 29144504356 scopus 로고    scopus 로고
    • A hierarchical particle swarm optimizer and its adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics
    • Janson, S., and Middendorf, M. (2005). A hierarchical particle swarm optimizer and its adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35 (6): 1272–1282.
    • (2005) Part B: Cybernetics , vol.35 , Issue.6 , pp. 1272-1282
    • Janson, S.1    Middendorf, M.2
  • 82
    • 84862524159 scopus 로고    scopus 로고
    • Particle swarm optimization-stochastic trajectory analysis and parameter selection
    • In F. Chan and M. KumarTiwari (Eds.), Wien: I-TECH Education and Publishing
    • Jiang, M., Luo, Y., and Yang, S. (2007a). Particle swarm optimization-stochastic trajectory analysis and parameter selection. In F. Chan and M. KumarTiwari (Eds.), Swarm intelligence, Focus on ant and particle swarm optimization, pp. 179–198. Wien: I-TECH Education and Publishing.
    • (2007) Swarm Intelligence, Focus on Ant and Particle Swarm Optimization , pp. 179-198
    • Jiang, M.1    Luo, Y.2    Yang, S.3
  • 83
    • 33846561118 scopus 로고    scopus 로고
    • Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
    • Jiang, M., Luo, Y. P., and Yang, S. Y. (2007b). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, 102 (1): 8–16.
    • (2007) Information Processing Letters , vol.102 , Issue.1 , pp. 8-16
    • Jiang, M.1    Luo, Y.P.2    Yang, S.Y.3
  • 84
    • 37249009707 scopus 로고    scopus 로고
    • A hybrid genetic algorithm and particle swarm optimization for multimodal functions
    • Kao, Y.-T., and Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing, 8 (2): 849–857.
    • (2008) Applied Soft Computing , vol.8 , Issue.2 , pp. 849-857
    • Kao, Y.-T.1    Zahara, E.2
  • 85
    • 84872620351 scopus 로고    scopus 로고
    • A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization
    • Kaucic, M. (2013). A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. Journal of Global Optimization, 55 (1): 165–188.
    • (2013) Journal of Global Optimization , vol.55 , Issue.1 , pp. 165-188
    • Kaucic, M.1
  • 87
    • 84899047533 scopus 로고    scopus 로고
    • Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance
    • Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In IEEE Congress on Evolutionary Computation, pp. 1931–1938.
    • (1999) In IEEE Congress on Evolutionary Computation , pp. 1931-1938
    • Kennedy, J.1
  • 92
    • 84905641700 scopus 로고    scopus 로고
    • Finite first hitting time versus stochastic convergence in particle swarm optimisation
    • Lehre, P. K., and Witt, C. (2013). Finite first hitting time versus stochastic convergence in particle swarm optimisation. In Advances in Metaheuristics, pp. 1–20.
    • (2013) In Advances in Metaheuristics , pp. 1-20
    • Lehre, P.K.1    Witt, C.2
  • 93
    • 84863431143 scopus 로고    scopus 로고
    • Grey particle swarm optimization
    • Leu, M.-S., and Yeh, M.-F. (2012). Grey particle swarm optimization. Applied Soft Computing, 12 (9): 2985–2996.
    • (2012) Applied Soft Computing , vol.12 , Issue.9 , pp. 2985-2996
    • Leu, M.-S.1    Yeh, M.-F.2
  • 95
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • Liang, J. J., Qin, A. K., Suganthan, P. N., and Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10 (3): 281–295.
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , Issue.3 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 96
    • 84931028371 scopus 로고    scopus 로고
    • Order-2 stability analysis of particle swarm optimization
    • Liu, Q. (2014). Order-2 stability analysis of particle swarm optimization. Evolutionary Computation, 23 (2): 187–216.
    • (2014) Evolutionary Computation , vol.23 , Issue.2 , pp. 187-216
    • Liu, Q.1
  • 97
    • 67650756758 scopus 로고    scopus 로고
    • Economic dispatch using particle swarm optimization: A review
    • Mahor, A., Prasad, V., and Rangnekar, S. (2009). Economic dispatch using particle swarm optimization: A review. Renewable and Sustainable Energy Reviews, 13 (8): 2134–2141.
    • (2009) Renewable and Sustainable Energy Reviews , vol.13 , Issue.8 , pp. 2134-2141
    • Mahor, A.1    Prasad, V.2    Rangnekar, S.3
  • 100
  • 103
    • 0002511908 scopus 로고
    • A survey of constraint handling techniques in evolutionary computation methods
    • Michalewicz, Z. (1995). A survey of constraint handling techniques in evolutionary computation methods. In Annual Conference on Evolutionary Programming, pp. 135–155.
    • (1995) In Annual Conference on Evolutionary Programming , pp. 135-155
    • Michalewicz, Z.1
  • 104
    • 85014472137 scopus 로고    scopus 로고
    • GENOCOP: A genetic algorithm for numerical optimization problems with linear constraints
    • Michalewicz, Z., and Janikow, C. (1996). GENOCOP: A genetic algorithm for numerical optimization problems with linear constraints. Communications of the ACM, 39 (12): 223–240.
    • (1996) Communications of the ACM , vol.39 , Issue.12 , pp. 223-240
    • Michalewicz, Z.1    Janikow, C.2
  • 105
    • 25444524580 scopus 로고    scopus 로고
    • Evolutionary algorithms for constrained parameter optimization problems
    • Michalewicz, Z., and Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4 (1): 1–32.
    • (1996) Evolutionary Computation , vol.4 , Issue.1 , pp. 1-32
    • Michalewicz, Z.1    Schoenauer, M.2
  • 106
    • 0037354371 scopus 로고    scopus 로고
    • Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later
    • Moler, C., and Van Loan, C. (2003). Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45 (1): 3–49.
    • (2003) SIAM Review , vol.45 , Issue.1 , pp. 3-49
    • Moler, C.1    Van Loan, C.2
  • 109
    • 79952900512 scopus 로고    scopus 로고
    • Incremental social learning in particle swarms. IEEE Transactions on Systems, Man, and Cybernetics
    • Montes de Oca, M. A., Stützle, T., Van den Enden, K., and Dorigo, M. (2011). Incremental social learning in particle swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41 (2): 368–384.
    • (2011) Part B: Cybernetics , vol.41 , Issue.2 , pp. 368-384
    • Montes De Oca, M.A.1    Stützle, T.2    Van Den Enden, K.3    Dorigo, M.4
  • 112
    • 84862688092 scopus 로고    scopus 로고
    • A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
    • Nasir, M., Das, S., Maity, D., Sengupta, S., Halder, U., and Suganthan, P. N. (2012). A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Information Sciences, 209: 16–36.
    • (2012) Information Sciences , vol.209 , pp. 16-36
    • Nasir, M.1    Das, S.2    Maity, D.3    Sengupta, S.4    Halder, U.5    Suganthan, P.N.6
  • 114
    • 84864588280 scopus 로고    scopus 로고
    • Continuous dynamic constrained optimisation—The challenges
    • Nguyen, T., and Yao, X. (2012). Continuous dynamic constrained optimisation—The challenges. IEEE Transactions on Evolutionary Computation, 16 (6): 769–786.
    • (2012) IEEE Transactions on Evolutionary Computation , vol.16 , Issue.6 , pp. 769-786
    • Nguyen, T.1    Yao, X.2
  • 115
    • 79954575354 scopus 로고    scopus 로고
    • A novel particle swarm optimization algorithm with adaptive inertia weight
    • Nickabadi, A., Ebadzadeh, M. M., and Safabakhsh, R. (2011). A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing, 11 (4): 3658–3670.
    • (2011) Applied Soft Computing , vol.11 , Issue.4 , pp. 3658-3670
    • Nickabadi, A.1    Ebadzadeh, M.M.2    Safabakhsh, R.3
  • 116
    • 84901838355 scopus 로고    scopus 로고
    • Cooperative co-evolution with differential grouping for large scale optimization
    • Omidvar, M., Li, X., Mei, Y., and Yao, X. (2014). Cooperative co-evolution with differential grouping for large scale optimization. IEEE Transactions on Evolutionary Computation, 18 (3): 378–393.
    • (2014) IEEE Transactions on Evolutionary Computation , vol.18 , Issue.3 , pp. 378-393
    • Omidvar, M.1    Li, X.2    Mei, Y.3    Yao, X.4
  • 119
    • 33847713631 scopus 로고    scopus 로고
    • Particle swarms for linearly constrained optimisation
    • Paquet, U., and Engelbrecht, A. (2007). Particle swarms for linearly constrained optimisation. Fundamenta Informaticae, 76 (1): 147–170.
    • (2007) Fundamenta Informaticae , vol.76 , Issue.1 , pp. 147-170
    • Paquet, U.1    Engelbrecht, A.2
  • 121
    • 0344291226 scopus 로고    scopus 로고
    • Recent approaches to global optimization problems through particle swarm optimization
    • Parsopoulos, K., and Vrahatis, M. (2002b). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1 (2): 235–306.
    • (2002) Natural Computing , vol.1 , Issue.2 , pp. 235-306
    • Parsopoulos, K.1    Vrahatis, M.2
  • 122
    • 3142669892 scopus 로고    scopus 로고
    • On the computation of all global minimizers through particle swarm optimization
    • Parsopoulos, K. E., and Vrahatis, M. N. (2004). On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8 (3): 211–224.
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , Issue.3 , pp. 211-224
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 123
    • 44349195551 scopus 로고    scopus 로고
    • Analysis of the publications on the applications of particle swarm optimisation
    • Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Application, 2008 (3): 1–10.
    • (2008) Journal of Artificial Evolution and Application , vol.2008 , Issue.3 , pp. 1-10
    • Poli, R.1
  • 124
    • 69249213957 scopus 로고    scopus 로고
    • Mean and variance of the sampling distribution of particle swarm optimizers during stagnation
    • Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Transactions on Evolutionary Computation, 13 (4): 712–721.
    • (2009) IEEE Transactions on Evolutionary Computation , vol.13 , Issue.4 , pp. 712-721
    • Poli, R.1
  • 125
    • 56449121809 scopus 로고    scopus 로고
    • Theoretical derivation, analysis and empirical evaluation of a simpler particle swarm optimiser
    • Poli, R., Brattonx, D., Blackwell, T., and Kennedy, J. (2007). Theoretical derivation, analysis and empirical evaluation of a simpler particle swarm optimiser. In IEEE Congress on Evolutionary Computation, pp. 1955–1962.
    • (2007) In IEEE Congress on Evolutionary Computation , pp. 1955-1962
    • Poli, R.1    Brattonx, D.2    Blackwell, T.3    Kennedy, J.4
  • 126
    • 45449118697 scopus 로고    scopus 로고
    • Particle swarm optimization: An overview
    • Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence, 1 (1): 33–57.
    • (2007) Swarm Intelligence , vol.1 , Issue.1 , pp. 33-57
    • Poli, R.1    Kennedy, J.2    Blackwell, T.3
  • 129
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • Ratnaweera, A., Halgamuge, S. K., andWatson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8 (3): 240–255.
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.K.2    Andwatson, H.C.3
  • 130
    • 0031277292 scopus 로고    scopus 로고
    • Local convergence rates of simple evolutionary algorithms with cauchy mutations
    • Rudolph, G. (1997). Local convergence rates of simple evolutionary algorithms with cauchy mutations. IEEE Transactions on Evolutionary Computation, 1 (4): 249–258.
    • (1997) IEEE Transactions on Evolutionary Computation , vol.1 , Issue.4 , pp. 249-258
    • Rudolph, G.1
  • 131
    • 0003059188 scopus 로고    scopus 로고
    • Finite Markov chain results in evolutionary computation: A tour d’horizon
    • Rudolph, G. (1998). Finite Markov chain results in evolutionary computation: A tour d’horizon. Fundamenta Informaticae, 35 (1–4): 67–89.
    • (1998) Fundamenta Informaticae , vol.35 , Issue.14 , pp. 67-89
    • Rudolph, G.1
  • 132
    • 85014906466 scopus 로고    scopus 로고
    • Stochastic convergence
    • In T. B. Rozenberg and J. Kok (Eds.), Berlin: Springer
    • Rudolph, G. (2013). Stochastic convergence. In T. B. Rozenberg and J. Kok (Eds.), Handbook of natural computing, pp. 847–869. Berlin: Springer.
    • (2013) Handbook of Natural Computing , pp. 847-869
    • Rudolph, G.1
  • 133
    • 0029768771 scopus 로고
    • Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions—A survey of some theoretical and practical aspects of genetic algorithms
    • Salomon, R. (1995). Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions—A survey of some theoretical and practical aspects of genetic algorithms. BioSystems, 39: 263–278.
    • (1995) Biosystems , vol.39 , pp. 263-278
    • Salomon, R.1
  • 136
    • 0002400131 scopus 로고    scopus 로고
    • Boundary operators for constrained parameter optimization problems
    • Schoenauer, M., and Michalewicz, Z. (1997). Boundary operators for constrained parameter optimization problems. In Conference on Genetic Algorithms, pp. 322–329.
    • (1997) In Conference on Genetic Algorithms , pp. 322-329
    • Schoenauer, M.1    Michalewicz, Z.2
  • 139
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • In V. Porto, N. Saravanan, D. Waagen, and A. Eiben (Eds.), Berlin: Springer
    • Shi, Y., and Eberhart, R. (1998b). Parameter selection in particle swarm optimization. In V. Porto, N. Saravanan, D. Waagen, and A. Eiben (Eds.), Evolutionary programming VII, volume 1447 of LNCS, pp. 591–600. Berlin: Springer.
    • (1998) Evolutionary Programming VII, Volume 1447 of LNCS , pp. 591-600
    • Shi, Y.1    Eberhart, R.2
  • 141
    • 84870894266 scopus 로고    scopus 로고
    • Constraint consensus concentration for identifying disjoint feasible regions in nonlinear programmes
    • Smith, L., Chinneck, J., and Aitken, V. (2013). Constraint consensus concentration for identifying disjoint feasible regions in nonlinear programmes. Optimization Methods and Software, 28 (2): 339–363.
    • (2013) Optimization Methods and Software , vol.28 , Issue.2 , pp. 339-363
    • Smith, L.1    Chinneck, J.2    Aitken, V.3
  • 142
    • 0019525292 scopus 로고
    • Minimization by random search techniques
    • Solis, F. J., and Wets, R. J.-B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6 (1): 19–30.
    • (1981) Mathematics of Operations Research , vol.6 , Issue.1 , pp. 19-30
    • Solis, F.J.1    Wets, R.J.2
  • 145
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, R., and Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11 (4): 341–359.
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 146
    • 79251595398 scopus 로고    scopus 로고
    • An improved vector particle swarm optimization for constrained optimization problems
    • Sun, C.-l., Zeng, J.-c., and Pan, J.-s. (2011). An improved vector particle swarm optimization for constrained optimization problems. Information Sciences, 181 (6): 1153–1163.
    • (2011) Information Sciences , vol.181 , Issue.6 , pp. 1153-1163
    • Sun, C.-L.1    Zeng, J.-C.2    Pan, J.-S.3
  • 147
    • 84866861567 scopus 로고    scopus 로고
    • Constrained optimization by constrained particle swarm optimizer with-level control
    • In A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, and Y. Ohsawa (Eds.), Berlin: Springer
    • Takahama, T., and Sakai, S. (2005). Constrained optimization by constrained particle swarm optimizer with-level control. In A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, and Y. Ohsawa (Eds.), Soft computing as transdisciplinary science and technology, volume 29 of Advances in soft computing, pp. 1019–1029. Berlin: Springer.
    • (2005) Soft Computing as Transdisciplinary Science and Technology, Volume 29 of Advances in Soft Computing , pp. 1019-1029
    • Takahama, T.1    Sakai, S.2
  • 148
    • 80053575443 scopus 로고    scopus 로고
    • Feedback learning particle swarm optimization
    • Tang, Y., Wang, Z., and Fang, J.-a. (2011). Feedback learning particle swarm optimization. Applied Soft Computing, 11 (8): 4713–4725.
    • (2011) Applied Soft Computing , vol.11 , Issue.8 , pp. 4713-4725
    • Tang, Y.1    Wang, Z.2    Fang, J.-A.3
  • 149
    • 0003424374 scopus 로고    scopus 로고
    • Philadelphia: Society for Industrial and Applied Mathematics
    • Trefethen, L. N., and Bau III, D. (1997). Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics.
    • (1997) Numerical Linear Algebra
    • Trefethen, L.N.1    Bau, I.2
  • 150
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, 85 (6): 317–325.
    • (2003) Information Processing Letters , vol.85 , Issue.6 , pp. 317-325
    • Trelea, I.C.1
  • 151
    • 0038281789 scopus 로고    scopus 로고
    • An analysis of particle swarm optimizers. PhD thesis, Department of Computer Science
    • Van den Bergh, F. (2002). An analysis of particle swarm optimizers. PhD thesis, Department of Computer Science, University of Pretoria.
    • (2002) University of Pretoria
    • Van Den Bergh, F.1
  • 154
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • Van den Bergh, F., and Engelbrecht, A. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176 (8): 937–971.
    • (2006) Information Sciences , vol.176 , Issue.8 , pp. 937-971
    • Van Den Bergh, F.1    Engelbrecht, A.2
  • 155
    • 79951660904 scopus 로고    scopus 로고
    • A convergence proof for the particle swarm optimiser
    • Van den Bergh, F., and Engelbrecht, A. (2010). A convergence proof for the particle swarm optimiser. Fundamenta Informaticae, 105 (4): 341–374.
    • (2010) Fundamenta Informaticae , vol.105 , Issue.4 , pp. 341-374
    • Van Den Bergh, F.1    Engelbrecht, A.2
  • 156
    • 85014499091 scopus 로고    scopus 로고
    • Principal component particle swarm optimization: A step towards topological swarm intelligence
    • Voss, M. S. (2005). Principal component particle swarm optimization: A step towards topological swarm intelligence. In IEEE Congress on Evolutionary Computation, pp. 298–305.
    • (2005) In IEEE Congress on Evolutionary Computation , pp. 298-305
    • Voss, M.S.1
  • 157
  • 158
    • 84870252611 scopus 로고    scopus 로고
    • Diversity enhanced particle swarm optimization with neighborhood search
    • Wang, H., Sun, H., Li, C., Rahnamayan, S., and Pan, J.-s. (2013). Diversity enhanced particle swarm optimization with neighborhood search. Information Sciences, 223: 119–135.
    • (2013) Information Sciences , vol.223 , pp. 119-135
    • Wang, H.1    Sun, H.2    Li, C.3    Rahnamayan, S.4    Pan, J.-S.5
  • 159
    • 79960562019 scopus 로고    scopus 로고
    • Self-adaptive learning based particle swarm optimization
    • Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., and Tian, Q. (2011). Self-adaptive learning based particle swarm optimization. Information Sciences, 181 (20): 4515–4538.
    • (2011) Information Sciences , vol.181 , Issue.20 , pp. 4515-4538
    • Wang, Y.1    Li, B.2    Weise, T.3    Wang, J.4    Yuan, B.5    Tian, Q.6
  • 160
    • 33744739238 scopus 로고    scopus 로고
    • Analysis of the particle swarm optimization algorithm.Master’s thesis
    • University of Pretoria, South Africa
    • Wilke, D. (2005). Analysis of the particle swarm optimization algorithm.Master’s thesis, Department of Mechanical and Aeronautical Engineering, University of Pretoria, South Africa.
    • (2005) Department of Mechanical and Aeronautical Engineering
    • Wilke, D.1
  • 161
    • 34249309922 scopus 로고    scopus 로고
    • Comparison of linear and classical velocity update rules in particle swarm optimization: Notes on scale and frame invariance
    • Wilke, D., Kok, S., and Groenwold, A. (2007). Comparison of linear and classical velocity update rules in particle swarm optimization: Notes on scale and frame invariance. International Journal for Numerical Methods in Engineering, 70 (8): 985–1008.
    • (2007) International Journal for Numerical Methods in Engineering , vol.70 , Issue.8 , pp. 985-1008
    • Wilke, D.1    Kok, S.2    Groenwold, A.3
  • 162
    • 70349139937 scopus 로고    scopus 로고
    • Why standard particle swarm optimisers elude a theoretical runtime analysis
    • Witt, C. (2009). Why standard particle swarm optimisers elude a theoretical runtime analysis. In Foundations of Genetic Algorithms, pp. 13–20.
    • (2009) In Foundations of Genetic Algorithms , pp. 13-20
    • Witt, C.1
  • 163
    • 70350103089 scopus 로고    scopus 로고
    • A perturbed particle swarm algorithm for numerical optimization
    • Xinchao, Z. (2010). A perturbed particle swarm algorithm for numerical optimization. Applied Soft Computing, 10 (1): 119–124.
    • (2010) Applied Soft Computing , vol.10 , Issue.1 , pp. 119-124
    • Xinchao, Z.1
  • 164
    • 21744438068 scopus 로고    scopus 로고
    • Applying family competition to evolution strategies for constrained optimization
    • In P. Angeline, R. Reynolds, J. McDonnell, and R. Eberhart (Eds.), Berlin: Springer
    • Yang, J.-M., Chen, Y.-P., Horng, J.-T., and Kao, C.-Y. (1997). Applying family competition to evolution strategies for constrained optimization. In P. Angeline, R. Reynolds, J. McDonnell, and R. Eberhart (Eds.), Evolutionary programming VI, volume 1213 of LNCS, pp. 201–211. Berlin: Springer.
    • (1997) Evolutionary Programming VI, Volume 1213 of LNCS , pp. 201-211
    • Yang, J.-M.1    Chen, Y.-P.2    Horng, J.-T.3    Kao, C.-Y.4
  • 165
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87 (9): 1423–1447.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 166
    • 70349626031 scopus 로고    scopus 로고
    • Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics
    • Zhan, Z., Zhang, J., Li, Y., and Chung, H. (2009). Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39 (6): 1362–1381.
    • (2009) Part B: Cybernetics , vol.39 , Issue.6 , pp. 1362-1381
    • Zhan, Z.1    Zhang, J.2    Li, Y.3    Chung, H.4
  • 168
    • 79960561104 scopus 로고    scopus 로고
    • Scale-free fully informed particle swarm optimization algorithm
    • Zhang, C., and Yi, Z. (2011). Scale-free fully informed particle swarm optimization algorithm. Information Sciences, 181 (20): 4550–4568.
    • (2011) Information Sciences , vol.181 , Issue.20 , pp. 4550-4568
    • Zhang, C.1    Yi, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.