메뉴 건너뛰기




Volumn 11, Issue 4, 2011, Pages 3658-3670

A novel particle swarm optimization algorithm with adaptive inertia weight

Author keywords

Adaptation; Inertia weight; Particle swarm optimization; Success rate

Indexed keywords

ADAPTATION; ADAPTIVE INERTIA; COLLECTIVE BEHAVIOR; DYNAMIC FUNCTIONS; EMPIRICAL STUDIES; ENGINEERING PROBLEMS; EXPLORATION AND EXPLOITATION; FEEDBACK PARAMETERS; INERTIA WEIGHT; MAIN GROUP; PARTICLE SWARM OPTIMIZATION ALGORITHM; PARTICLE SWARM OPTIMIZATION MODELS; SEARCH SPACES; STATIC ENVIRONMENT; STATIC TESTS; STOCHASTIC POPULATION; SUCCESS RATE; TIME VARYING;

EID: 79954575354     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2011.01.037     Document Type: Article
Times cited : (737)

References (39)
  • 4
  • 6
    • 35048898017 scopus 로고    scopus 로고
    • Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization
    • Seattle USA
    • X. Li Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization GECCO 2004 2004 Seattle USA pp. 105-116
    • (2004) GECCO 2004
    • Li, X.1
  • 9
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • DOI 10.1109/TEVC.2005.857610
    • J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar Comprehensive learning particle swarm optimizer for global optimization of multimodal functions IEEE T. on Evolutionary Computation, vol. 10 2006 281 295 (Pubitemid 43821759)
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , Issue.3 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 14
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • R.C. Eberhart, and Y.H. Shi Comparing inertia weights and constriction factors in particle swarm optimization IEEE Congress on Evolutionary Computation 2000 84 88
    • (2000) IEEE Congress on Evolutionary Computation , pp. 84-88
    • Eberhart, R.C.1    Shi, Y.H.2
  • 16
    • 0004000364 scopus 로고    scopus 로고
    • Experimental study of particle swarm optimization
    • Orlando
    • Y.H. Shi, and R.C. Eberhart Experimental study of particle swarm optimization SCI2000 Conference Orlando 2000
    • (2000) SCI2000 Conference
    • Shi, Y.H.1    Eberhart, R.C.2
  • 17
    • 23344434757 scopus 로고    scopus 로고
    • Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
    • DOI 10.1016/j.cor.2004.08.012, PII S0305054804002023
    • A. Chatterjee, and P. Siarry Nonlinear inertia weight variation for dynamic adaption in particle swarm optimization Computer and Operations Research 33 2006 859 871 March 2006 (Pubitemid 41101128)
    • (2006) Computers and Operations Research , vol.33 , Issue.3 , pp. 859-871
    • Chatterjee, A.1    Siarry, P.2
  • 20
    • 33750932978 scopus 로고    scopus 로고
    • A new adaptive well-chosen inertia weight strategy to automatically harmonize global and local search ability in particle swarm optimization
    • K. Lei, Y. Qiu, and Y. He A new adaptive well-chosen inertia weight strategy to automatically harmonize global and local search ability in particle swarm optimization ISSCAA 2006
    • (2006) ISSCAA
    • Lei, K.1    Qiu, Y.2    He, Y.3
  • 21
    • 33947589202 scopus 로고    scopus 로고
    • A decreasing inertia weight particle swarm optimizer
    • DOI 10.1080/03052150601047362, PII 773542699
    • S. Fan, and Y. Chiu A decreasing inertia weight particle swarm optimizer Engineering Optimization 39 2007 203 228 (Pubitemid 46478747)
    • (2007) Engineering Optimization , vol.39 , Issue.2 , pp. 203-228
    • Fan, S.-K.S.1    Chiu, Y.-Y.2
  • 24
    • 40249103087 scopus 로고    scopus 로고
    • A dynamic inertia weight particle swarm optimization algorithm
    • DOI 10.1016/j.chaos.2006.09.063, PII S0960077906009131
    • B. Jiao, Z. Lian, and X. Gu A dynamic inertia weight particle swarm optimization algorithm Chaos, Solitons & Fractals 37 2008 698 705 (Pubitemid 351335358)
    • (2008) Chaos, Solitons and Fractals , vol.37 , Issue.3 , pp. 698-705
    • Jiao, B.1    Lian, Z.2    Gu, X.3
  • 25
    • 36349027876 scopus 로고    scopus 로고
    • Okinawa unit commitment computation - A novel fuzzy adaptive particle swarm optimization approach
    • A.Y. Saber, T. Senjyu, N. Urasaki, and T. Funabashi Okinawa unit commitment computation - a novel fuzzy adaptive particle swarm optimization approach Power Systems Conference and Exposition 2006 1820 1828
    • (2006) Power Systems Conference and Exposition , pp. 1820-1828
    • Saber, A.Y.1    Senjyu, T.2    Urasaki, N.3    Funabashi, T.4
  • 26
    • 34249112611 scopus 로고    scopus 로고
    • A modified particle swarm optimizer with dynamic adaptation
    • DOI 10.1016/j.amc.2006.12.045, PII S0096300306017048
    • X. Yang, J. Yuan, and H. Mao A modified particle swarm optimizer with dynamic adaptation" Applied Mathematics and Computation 189 2007 1205 1213 (Pubitemid 46802736)
    • (2007) Applied Mathematics and Computation , vol.189 , Issue.2 , pp. 1205-1213
    • Yang, X.1    Yuan, J.2    Yuan, J.3    Mao, H.4
  • 27
    • 34548475547 scopus 로고    scopus 로고
    • On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems
    • DOI 10.1016/j.asoc.2007.01.010, PII S1568494607000208
    • M.S. Arumugam, and M.V.C. Rao On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems Applied Soft Computing 2008 324 336 (Pubitemid 47374567)
    • (2008) Applied Soft Computing Journal , vol.8 , Issue.1 , pp. 324-336
    • Arumugam, M.S.1    Rao, M.V.C.2
  • 28
    • 42749084908 scopus 로고    scopus 로고
    • Adaptive particle swarm optimization approach for static and dynamic economic load dispatch
    • B.K. Panigrahi, V.R. Pandi, and S. Das Adaptive particle swarm optimization approach for static and dynamic economic load dispatch Energy Conversion and Management 49 2008 1407 1415
    • (2008) Energy Conversion and Management , vol.49 , pp. 1407-1415
    • Panigrahi, B.K.1    Pandi, V.R.2    Das, S.3
  • 31
    • 84901453819 scopus 로고    scopus 로고
    • Memory enhanced evolutionary algorithms for changing optimization problems
    • J. Branke Memory enhanced evolutionary algorithms for changing optimization problems Congress on Evolutionary Computation 1999 1875 1882
    • (1999) Congress on Evolutionary Computation , pp. 1875-1882
    • Branke, J.1
  • 35
    • 0011726826 scopus 로고
    • Genetic algorithms for nonlinear mixed discrete-integer optimization problems via metagenetic parameter optimization
    • S.J. Wu, and P.T. Chow Genetic algorithms for nonlinear mixed discrete-integer optimization problems via metagenetic parameter optimization Engineering Optimization 24 1995 137 159
    • (1995) Engineering Optimization , vol.24 , pp. 137-159
    • Wu, S.J.1    Chow, P.T.2
  • 36
    • 20444466485 scopus 로고    scopus 로고
    • A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
    • DOI 10.1016/j.cma.2004.09.007, PII S0045782504004682
    • K. Lee, and Z. Geem A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice Computer Methods in Applied Mechanics and Engineering 194 2004 3902 3933 (Pubitemid 40815237)
    • (2005) Computer Methods in Applied Mechanics and Engineering , vol.194 , Issue.36-38 , pp. 3902-3933
    • Lee, K.S.1    Geem, Z.W.2
  • 37
    • 79954621065 scopus 로고    scopus 로고
    • CODEQ: An effective metaheuristic for continuous global optimisation
    • M.G.H. Omran CODEQ: an effective metaheuristic for continuous global optimisation International Journal of Metaheuristics 1 2010 108 131
    • (2010) International Journal of Metaheuristics , vol.1 , pp. 108-131
    • Omran, M.G.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.