메뉴 건너뛰기




Volumn 22, Issue 6, 2016, Pages 1380-1403

Modelling and prediction of a destination's monthly average daily rate and occupancy rate based on hotel room prices offered online

Author keywords

Average daily rate; Dynamic prices; Hotel performance metrics; Occupancy rate; Virtual channel closures

Indexed keywords

HOTEL INDUSTRY; MODELING; PREDICTION; PRICE DYNAMICS; TOURISM MANAGEMENT; TOURIST DESTINATION;

EID: 85014172876     PISSN: 13548166     EISSN: None     Source Type: Journal    
DOI: 10.5367/te.2015.0491     Document Type: Article
Times cited : (26)

References (26)
  • 2
    • 35148898303 scopus 로고    scopus 로고
    • Modelling and forecasting Australian domestic tourism
    • Athanasopoulos G and Hyndman RJ (2008) Modelling and forecasting Australian domestic tourism. Tourism Management 29(1): 19-31.
    • (2008) Tourism Management , vol.29 , Issue.1 , pp. 19-31
    • Athanasopoulos, G.1    Hyndman, R.J.2
  • 3
    • 79953692971 scopus 로고    scopus 로고
    • Combining linear and nonlinear model in forecasting tourism demand
    • Chen K-Y (2011) Combining linear and nonlinear model in forecasting tourism demand. Expert Systems with Applications 38(8): 10368-10376.
    • (2011) Expert Systems with Applications , vol.38 , Issue.8 , pp. 10368-10376
    • Chen, K.-Y.1
  • 4
    • 67349200976 scopus 로고    scopus 로고
    • Forecasting tourism demand with ARMA-based methods
    • Chu F-L (2009) Forecasting tourism demand with ARMA-based methods. Tourism Management 30(5): 740-751.
    • (2009) Tourism Management , vol.30 , Issue.5 , pp. 740-751
    • Chu, F.-L.1
  • 5
    • 79956360947 scopus 로고    scopus 로고
    • Booking horizon forecasting with dynamic updating: A case study of hotel reservation data
    • Haensel A and Koole G (2011) Booking horizon forecasting with dynamic updating: a case study of hotel reservation data. International Journal of Forecasting 27(3): 942-960.
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 942-960
    • Haensel, A.1    Koole, G.2
  • 6
    • 84955452861 scopus 로고    scopus 로고
    • Innovation of tourism statistics through the use of new big data sources
    • Prague, 15-16 May
    • Heerschap N, Ortega S, Priem A, et al. (2014) Innovation of tourism statistics through the use of new big data sources. Paper presented at the 12th Global Forum of Tourism Statistics, Prague, 15-16 May.
    • (2014) 12th Global Forum of Tourism Statistics
    • Heerschap, N.1    Ortega, S.2    Priem, A.3
  • 7
    • 85014136157 scopus 로고    scopus 로고
    • accessed 12 December 2014
    • Instituto Nacional de Estadística (n.d.) Hotel occupancy survey. Available at: http://www.ine.es/jaxi/menu.do?L=1&type=pcaxis&path=%2Ft11/e162eoh&file=inebase (accessed 12 December 2014).
    • Hotel Occupancy Survey
  • 8
    • 85014130587 scopus 로고    scopus 로고
    • accessed 10 February 2015
    • Instituto Nacional de Estadística (2008) Indicators on the profitability of the hotel sector. Available at: http://www.ine.es/jaxiT3/Tabla.htm?t=2057 (accessed 10 February 2015).
    • (2008) Indicators on the Profitability of the Hotel Sector
  • 9
    • 85014210475 scopus 로고    scopus 로고
    • accessed 12 December 2014
    • Instituto Nacional de Estadística (2013a) Hotel occupancy survey 2013: methodology. Available at: http://www.ine.es/en/daco/daco42/ocuphotel/notaeoh-13-en.pdf (accessed 12 December 2014).
    • (2013) Hotel Occupancy Survey 2013: Methodology
  • 10
    • 85014177798 scopus 로고    scopus 로고
    • Hotel price index (hpi)
    • accessed 12 March 2015
    • Instituto Nacional de Estadística (2013b) Hotel price index (hpi). Base 2008 (as of January 2014) methodological note. Available at: http://www.ine.es/en/daco/daco42/prechote/meto-iph-base2008-en.pdf (accessed 12 March 2015).
    • (2013) Base 2008 (as of January 2014) Methodological Note
  • 11
    • 0141906215 scopus 로고    scopus 로고
    • Leading indicator tourism forecasts
    • Kulendran N and Witt SF (2003) Leading indicator tourism forecasts. Tourism Management 24(5): 503-510.
    • (2003) Tourism Management , vol.24 , Issue.5 , pp. 503-510
    • Kulendran, N.1    Witt, S.F.2
  • 12
    • 85014283525 scopus 로고    scopus 로고
    • Data mining for hotel firms: Use and limitations
    • Rutherford D and O'Fallon M (eds) 4th edn. New York: Van Nostrand Rheinhold
    • Magnini V, Honeycutt E and Hodge S (2007) Data mining for hotel firms: use and limitations. In: Rutherford D and O'Fallon M (eds) Hotel Management and Operations. 4th edn. New York: Van Nostrand Rheinhold, pp. 399-414.
    • (2007) Hotel Management and Operations , pp. 399-414
    • Magnini, V.1    Honeycutt, E.2    Hodge, S.3
  • 13
  • 14
    • 85014183141 scopus 로고    scopus 로고
    • Dynamic pricing patterns on an internet distribution channel: The case study of Bilbao's hotels in 2013
    • Lugano, Switzerland, 3-6 February 2015, Springer International Publishing
    • Oses N, Gerrikagoitia J and Alzua A (2015) Dynamic pricing patterns on an internet distribution channel: the case study of Bilbao's hotels in 2013. In: Enter Conference on Information and Communication Technologies in Tourism. Lugano, Switzerland, 3-6 February 2015, Springer International Publishing.
    • (2015) Enter Conference on Information and Communication Technologies in Tourism
    • Oses, N.1    Gerrikagoitia, J.2    Alzua, A.3
  • 15
    • 85014250340 scopus 로고    scopus 로고
    • accessed 15 December 2010
    • PKF Hospitality Research (2010) Assessing accuracy: hotel horizons forecasts. Available at: http://www.pkfc.com/en/pkfhome/nism/accuracyassessment/PKFAccuracy0610.pdf (accessed 15 December 2010).
    • (2010) Assessing Accuracy: Hotel Horizons Forecasts
  • 17
    • 84966707404 scopus 로고    scopus 로고
    • Unpublished Master's thesis, Universidad del País Vasco-Euskal Herriko Unibertsitatea
    • Roman I (2012) Measuring the influence of events in hotel room prices. Unpublished Master's thesis, Universidad del País Vasco-Euskal Herriko Unibertsitatea.
    • (2012) Measuring the Influence of Events in Hotel Room Prices
    • Roman, I.1
  • 18
    • 78650300140 scopus 로고    scopus 로고
    • Combination forecasts of international tourism demand
    • Shen S, Li G and Song H (2011) Combination forecasts of international tourism demand. Annals of Tourism Research 38(1): 72-89.
    • (2011) Annals of Tourism Research , vol.38 , Issue.1 , pp. 72-89
    • Shen, S.1    Li, G.2    Song, H.3
  • 19
    • 36549022027 scopus 로고    scopus 로고
    • Tourism demand modelling and forecasting - A review of recent research
    • Song H and Li G (2008) Tourism demand modelling and forecasting - a review of recent research. Tourism Management 29(2): 203-220.
    • (2008) Tourism Management , vol.29 , Issue.2 , pp. 203-220
    • Song, H.1    Li, G.2
  • 20
    • 0037249451 scopus 로고    scopus 로고
    • Tourism forecasting: Accuracy of alternative econometric models
    • Song H, Witt SF and Jensen TC (2003) Tourism forecasting: accuracy of alternative econometric models. International Journal of Forecasting 19(1): 123-141.
    • (2003) International Journal of Forecasting , vol.19 , Issue.1 , pp. 123-141
    • Song, H.1    Witt, S.F.2    Jensen, T.C.3
  • 23
    • 85014186665 scopus 로고    scopus 로고
    • Ireland case study: Measuring and analysing regional tourism
    • Venice, Italy, 5-6 July 2012
    • Wall C and McFeely S (2012) Ireland case study: measuring and analysing regional tourism. In: UNWTO/InRoute 1st Seminar on Regional Tourism: setting the focus. Venice, Italy, 5-6 July 2012. Available at: http://home.gwu.edu/~frechtli/material/6INRouTE%20EconTools7-12R.pdf.
    • (2012) UNWTO/InRoute 1st Seminar on Regional Tourism: Setting the Focus
    • Wall, C.1    McFeely, S.2
  • 24
    • 0001609105 scopus 로고
    • Forecasting tourism demand: A review of empirical research
    • Witt SF and Witt CA (1995) Forecasting tourism demand: a review of empirical research. International Journal of Forecasting 11(3): 447-475.
    • (1995) International Journal of Forecasting , vol.11 , Issue.3 , pp. 447-475
    • Witt, S.F.1    Witt, C.A.2
  • 25
    • 79951809003 scopus 로고    scopus 로고
    • Investigating other leading indicators influencing Australian domestic tourism demand
    • Yap G and Allen D (2011) Investigating other leading indicators influencing Australian domestic tourism demand. Mathematics and Computers in Simulation 81(7): 1365-1374.
    • (2011) Mathematics and Computers in Simulation , vol.81 , Issue.7 , pp. 1365-1374
    • Yap, G.1    Allen, D.2
  • 26
    • 34548124632 scopus 로고    scopus 로고
    • An integrated forecasting approach to hotel demand
    • Yüksel S (2007) An integrated forecasting approach to hotel demand. Mathematical and Computer Modelling 46(7-8): 1063-1070.
    • (2007) Mathematical and Computer Modelling , vol.46 , Issue.7-8 , pp. 1063-1070
    • Yüksel, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.