-
1
-
-
84934443694
-
The Ras superfamily of small GTPases: the unlocked secrets
-
Goitre L, Trapani E, Trabalzini L, Retta SF. 2014. The Ras superfamily of small GTPases: the unlocked secrets. Methods Mol Biol 1120:1-18. https://doi.org/10.1007/978-1-62703-791-4_1.
-
(2014)
Methods Mol Biol
, vol.1120
, pp. 1-18
-
-
Goitre, L.1
Trapani, E.2
Trabalzini, L.3
Retta, S.F.4
-
2
-
-
0025010979
-
The GTPase superfamily: a conserved switch for diverse cell functions
-
Bourne HR, Sanders DA, McCormick F. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125-132. https://doi.org/10.1038/348125a0.
-
(1990)
Nature
, vol.348
, pp. 125-132
-
-
Bourne, H.R.1
Sanders, D.A.2
McCormick, F.3
-
3
-
-
70249085230
-
Rho family GTPases and their regulators in lymphocytes
-
Tybulewicz VL, Henderson RB. 2009. Rho family GTPases and their regulators in lymphocytes. Nat Rev Immunol 9:630-644. https://doi.org/10.1038/nri2606.
-
(2009)
Nat Rev Immunol
, vol.9
, pp. 630-644
-
-
Tybulewicz, V.L.1
Henderson, R.B.2
-
4
-
-
13444252631
-
GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors
-
Rossman KL, Der CJ, Sondek J. 2005. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167-180.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 167-180
-
-
Rossman, K.L.1
Der, C.J.2
Sondek, J.3
-
5
-
-
84944399715
-
Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins
-
Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, Grinstein S. 2015. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 6:8623. https://doi.org/10.1038/ncomms9623.
-
(2015)
Nat Commun
, vol.6
, pp. 8623
-
-
Schlam, D.1
Bagshaw, R.D.2
Freeman, S.A.3
Collins, R.F.4
Pawson, T.5
Fairn, G.D.6
Grinstein, S.7
-
6
-
-
1542373753
-
Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor
-
Kurokawa K, Itoh RE, Yoshizaki H, Nakamura YO, Matsuda M. 2004. Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol Biol Cell 15:1003-1010.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1003-1010
-
-
Kurokawa, K.1
Itoh, R.E.2
Yoshizaki, H.3
Nakamura, Y.O.4
Matsuda, M.5
-
7
-
-
0032573378
-
Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases
-
Caron E, Hall A. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282: 1717-1721. https://doi.org/10.1126/science.282.5394.1717.
-
(1998)
Science
, vol.282
, pp. 1717-1721
-
-
Caron, E.1
Hall, A.2
-
9
-
-
84929694872
-
HIV-1 Tat inhibits phagocytosis by preventing the recruitment of Cdc42 to the phagocytic cup
-
Debaisieux S, Lachambre S, Gross A, Mettling C, Besteiro S, Yezid H, HenaffD, Chopard C, Mesnard JM, Beaumelle B. 2015. HIV-1 Tat inhibits phagocytosis by preventing the recruitment of Cdc42 to the phagocytic cup. Nat Commun 6:6211. https://doi.org/10.1038/ncomms7211.
-
(2015)
Nat Commun
, vol.6
, pp. 6211
-
-
Debaisieux, S.1
Lachambre, S.2
Gross, A.3
Mettling, C.4
Besteiro, S.5
Yezid, H.6
Henaff, D.7
Chopard, C.8
Mesnard, J.M.9
Beaumelle, B.10
-
10
-
-
84936803280
-
Relationship of light scatter change and Cdc42-regulated actin status
-
Hong L, Chavez S, Smagley Y, Chigaev A, Sklar LA. 2016. Relationship of light scatter change and Cdc42-regulated actin status. Cytometry B Clin Cytom 90:499-505. https://doi.org/10.1002/cyto.b.21223.
-
(2016)
Cytometry B Clin Cytom
, vol.90
, pp. 499-505
-
-
Hong, L.1
Chavez, S.2
Smagley, Y.3
Chigaev, A.4
Sklar, L.A.5
-
11
-
-
79955774272
-
The small GTPase Cdc42 promotes membrane protrusion during polar body emission via ARP2-nucleated actin polymerization
-
Leblanc J, Zhang X, McKee D, Wang ZB, Li R, Ma C, Sun QY, Liu XJ. 2011. The small GTPase Cdc42 promotes membrane protrusion during polar body emission via ARP2-nucleated actin polymerization. Mol Hum Reprod 17:305-316. https://doi.org/10.1093/molehr/gar026.
-
(2011)
Mol Hum Reprod
, vol.17
, pp. 305-316
-
-
Leblanc, J.1
Zhang, X.2
McKee, D.3
Wang, Z.B.4
Li, R.5
Ma, C.6
Sun, Q.Y.7
Liu, X.J.8
-
12
-
-
84886886499
-
PLEKHG2 promotes heterotrimeric G protein betagamma-stimulated lymphocyte migration via Rac and Cdc42 activation and actin polymerization
-
Runne C, Chen S. 2013. PLEKHG2 promotes heterotrimeric G protein betagamma-stimulated lymphocyte migration via Rac and Cdc42 activation and actin polymerization. Mol Cell Biol 33:4294-4307. https://doi.org/10.1128/MCB.00879-13.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 4294-4307
-
-
Runne, C.1
Chen, S.2
-
13
-
-
84876282419
-
Manipulation of small Rho GTPases is a pathogeninduced process detected by NOD1
-
Keestra AM, Winter MG, Auburger JJ, Frässle SP, Xavier MN, Winter SE, Kim A, Poon V, Ravesloot MM, Waldenmaier JF, Tsolis RM, Eigenheer RA, Bäumler AJ. 2013. Manipulation of small Rho GTPases is a pathogeninduced process detected by NOD1. Nature 496:233-237. https://doi.org/10.1038/nature12025.
-
(2013)
Nature
, vol.496
, pp. 233-237
-
-
Keestra, A.M.1
Winter, M.G.2
Auburger, J.J.3
Frässle, S.P.4
Xavier, M.N.5
Winter, S.E.6
Kim, A.7
Poon, V.8
Ravesloot, M.M.9
Waldenmaier, J.F.10
Tsolis, R.M.11
Eigenheer, R.A.12
Bäumler, A.J.13
-
14
-
-
84949526547
-
CDC42 use in viral cell entry processes by RNA viruses
-
Swaine T, Dittmar MT. 2015. CDC42 use in viral cell entry processes by RNA viruses. Viruses 7:6526-6536. https://doi.org/10.3390/v7122955.
-
(2015)
Viruses
, vol.7
, pp. 6526-6536
-
-
Swaine, T.1
Dittmar, M.T.2
-
15
-
-
84867452880
-
Involvement of Rab6 in the regulation of phagocytosis against virus infection in invertebrates
-
Ye T, Tang W, Zhang X. 2012. Involvement of Rab6 in the regulation of phagocytosis against virus infection in invertebrates. J Proteome Res 11:4834-4846. https://doi.org/10.1021/pr300274k.
-
(2012)
J Proteome Res
, vol.11
, pp. 4834-4846
-
-
Ye, T.1
Tang, W.2
Zhang, X.3
-
16
-
-
65249168114
-
Ran GTPase regulates hemocytic phagocytosis of shrimp by interaction with myosin
-
Liu W, Han F, Zhang X. 2009. Ran GTPase regulates hemocytic phagocytosis of shrimp by interaction with myosin. J Proteome Res 8:1198-1206. https://doi.org/10.1021/pr800840x.
-
(2009)
J Proteome Res
, vol.8
, pp. 1198-1206
-
-
Liu, W.1
Han, F.2
Zhang, X.3
-
17
-
-
84882846383
-
Expression and function analysis of Rac1 homolog in Chinese shrimp Fenneropenaeus chinensis
-
Chi Y, Li F, Sun Y, Wen R, Li S. 2013. Expression and function analysis of Rac1 homolog in Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 35:927-932. https://doi.org/10.1016/j.fsi.2013.07.006.
-
(2013)
Fish Shellfish Immunol
, vol.35
, pp. 927-932
-
-
Chi, Y.1
Li, F.2
Sun, Y.3
Wen, R.4
Li, S.5
-
18
-
-
80054846424
-
Mechanism of inhibition of arginine kinase by flavonoids consistent with thermodynamics of docking simulation
-
Wang HR, Zhu WJ, Wang XY. 2011. Mechanism of inhibition of arginine kinase by flavonoids consistent with thermodynamics of docking simulation. Int J Biol Macromol 49:985-991. https://doi.org/10.1016/j.ijbiomac.2011.08.017.
-
(2011)
Int J Biol Macromol
, vol.49
, pp. 985-991
-
-
Wang, H.R.1
Zhu, W.J.2
Wang, X.Y.3
-
19
-
-
3042856467
-
The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants
-
Gattis JL, Ruben E, Fenley MO, Ellington WR, Chapman MS. 2004. The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants. Biochemistry 43:8680-8689. https://doi.org/10.1021/bi049793i.
-
(2004)
Biochemistry
, vol.43
, pp. 8680-8689
-
-
Gattis, J.L.1
Ruben, E.2
Fenley, M.O.3
Ellington, W.R.4
Chapman, M.S.5
-
20
-
-
79956099429
-
The role of Cys271 in conformational changes of arginine kinase
-
Liu N, Wang JS, Wang WD, Pan JC. 2011. The role of Cys271 in conformational changes of arginine kinase. Int J Biol Macromol 49:98-102. https://doi.org/10.1016/j.ijbiomac.2011.04.002.
-
(2011)
Int J Biol Macromol
, vol.49
, pp. 98-102
-
-
Liu, N.1
Wang, J.S.2
Wang, W.D.3
Pan, J.C.4
-
21
-
-
84894342518
-
Arginine kinase of Litopenaeus vannamei involved in white spot syndrome virus infection
-
Ma FF, Liu QH, Guan GK, Li C, Huang J. 2014. Arginine kinase of Litopenaeus vannamei involved in white spot syndrome virus infection. Gene 539:99-106. https://doi.org/10.1016/j.gene.2014.01.047.
-
(2014)
Gene
, vol.539
, pp. 99-106
-
-
Ma, F.F.1
Liu, Q.H.2
Guan, G.K.3
Li, C.4
Huang, J.5
-
22
-
-
84894064954
-
Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation
-
Humphries AC, Donnelly SK, Way M. 2014. Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 127:673-685. https://doi.org/10.1242/jcs.141366.
-
(2014)
J Cell Sci
, vol.127
, pp. 673-685
-
-
Humphries, A.C.1
Donnelly, S.K.2
Way, M.3
-
23
-
-
0036467393
-
Phagocytosis and innate immunity
-
Greenberg S, Grinstein S. 2002. Phagocytosis and innate immunity. Curr Opin Immunol 14:136-145. https://doi.org/10.1016/S0952-7915(01)00309-0.
-
(2002)
Curr Opin Immunol
, vol.14
, pp. 136-145
-
-
Greenberg, S.1
Grinstein, S.2
-
24
-
-
84877334567
-
Inhibition of redox/Fyn/c-Cbl pathway function by Cdc42 controls tumour initiation capacity and tamoxifen sensitivity in basal-like breast cancer cells
-
Chen HY, Yang YM, Stevens BM, Noble M. 2013. Inhibition of redox/Fyn/c-Cbl pathway function by Cdc42 controls tumour initiation capacity and tamoxifen sensitivity in basal-like breast cancer cells. EMBO Mol Med 5:723-736. https://doi.org/10.1002/emmm.201202140.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 723-736
-
-
Chen, H.Y.1
Yang, Y.M.2
Stevens, B.M.3
Noble, M.4
-
25
-
-
84964315943
-
Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma
-
Kumar A, Al-Sammarraie N, DiPette DJ, Singh US. 2014. Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma. Oncotarget 5:11709-11722. https://doi.org/10.18632/oncotarget.2606.
-
(2014)
Oncotarget
, vol.5
, pp. 11709-11722
-
-
Kumar, A.1
Al-Sammarraie, N.2
DiPette, D.J.3
Singh, U.S.4
-
26
-
-
84929467244
-
Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells
-
Ferru-Clement R, Fresquet F, Norez C, Metaye T, Becq F, Kitzis A, Thoreau V. 2015. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells. PLoS One 10:e0118943. https://doi.org/10.1371/journal.pone.0118943.
-
(2015)
PLoS One
, vol.10
-
-
Ferru-Clement, R.1
Fresquet, F.2
Norez, C.3
Metaye, T.4
Becq, F.5
Kitzis, A.6
Thoreau, V.7
-
27
-
-
0035370616
-
Arginine kinase of the flagellate protozoa Trypanosoma cruzi. Regulation of its expression and catalytic activity
-
Alonso GD, Pereira CA, Remedi MS, Paveto MC, Cochella L, Ivaldi MS, Gerez de Burgos NM, Torres HN, Flawia MM. 2001. Arginine kinase of the flagellate protozoa Trypanosoma cruzi. Regulation of its expression and catalytic activity. FEBS Lett 498:22-25.
-
(2001)
FEBS Lett
, vol.498
, pp. 22-25
-
-
Alonso, G.D.1
Pereira, C.A.2
Remedi, M.S.3
Paveto, M.C.4
Cochella, L.5
Ivaldi, M.S.6
Gerez de Burgos, N.M.7
Torres, H.N.8
Flawia, M.M.9
-
28
-
-
84896142753
-
Proteomic analysis of differentially expressed proteins in Fenneropenaeus chinensis hemocytes upon white spot syndrome virus infection
-
Li W, Tang X, Xing J, Sheng X, Zhan W. 2014. Proteomic analysis of differentially expressed proteins in Fenneropenaeus chinensis hemocytes upon white spot syndrome virus infection. PLoS One 9:e89962. https://doi.org/10.1371/journal.pone.0089962.
-
(2014)
PLoS One
, vol.9
-
-
Li, W.1
Tang, X.2
Xing, J.3
Sheng, X.4
Zhan, W.5
-
29
-
-
0036038876
-
Isolation of differentially expressed genes from white spot virus (WSV) infected Pacific blue shrimp (Penaeus stylirostris)
-
Astrofsky KM, Roux MM, Klimpel KR, Fox JG, Dhar AK. 2002. Isolation of differentially expressed genes from white spot virus (WSV) infected Pacific blue shrimp (Penaeus stylirostris). Arch Virol 147:1799-1812. https://doi.org/10.1007/s00705-002-0845-z.
-
(2002)
Arch Virol
, vol.147
, pp. 1799-1812
-
-
Astrofsky, K.M.1
Roux, M.M.2
Klimpel, K.R.3
Fox, J.G.4
Dhar, A.K.5
-
30
-
-
57349198271
-
Characterization of white spot syndrome virus envelope protein VP51A and its interaction with viral tegument protein VP26
-
Chang YS, Liu WJ, Chou TL, Lee YT, Lee TL, Huang WT, Kou GH, Lo CF. 2008. Characterization of white spot syndrome virus envelope protein VP51A and its interaction with viral tegument protein VP26. J Virol 82:12555-12564. https://doi.org/10.1128/JVI.01238-08.
-
(2008)
J Virol
, vol.82
, pp. 12555-12564
-
-
Chang, Y.S.1
Liu, W.J.2
Chou, T.L.3
Lee, Y.T.4
Lee, T.L.5
Huang, W.T.6
Kou, G.H.7
Lo, C.F.8
-
31
-
-
34249703490
-
Understanding HSV-1 entry glycoproteins
-
Reske A, Pollara G, Krummenacher C, Chain BM, Katz DR. 2007. Understanding HSV-1 entry glycoproteins. Rev Med Virol 17:205-215. https://doi.org/10.1002/rmv.531.
-
(2007)
Rev Med Virol
, vol.17
, pp. 205-215
-
-
Reske, A.1
Pollara, G.2
Krummenacher, C.3
Chain, B.M.4
Katz, D.R.5
-
32
-
-
84886806366
-
Prohibitin interacts with envelope proteins of white spot syndrome virus and prevents infection in the red swamp crayfish, Procambarus clarkii
-
Lan JF, Li XC, Sun JJ, Gong J, Wang XW, Shi XZ, Shi LJ, Weng YD, Zhao XF, Wang JX. 2013. Prohibitin interacts with envelope proteins of white spot syndrome virus and prevents infection in the red swamp crayfish, Procambarus clarkii. J Virol 87:12756-12765. https://doi.org/10.1128/JVI.02198-13.
-
(2013)
J Virol
, vol.87
, pp. 12756-12765
-
-
Lan, J.F.1
Li, X.C.2
Sun, J.J.3
Gong, J.4
Wang, X.W.5
Shi, X.Z.6
Shi, L.J.7
Weng, Y.D.8
Zhao, X.F.9
Wang, J.X.10
-
33
-
-
84877767051
-
VP292 of white spot syndrome virus interacts with VP26
-
Li Q, Liu QH, Huang J. 2013. VP292 of white spot syndrome virus interacts with VP26. Indian J Virol 24:54-58. https://doi.org/10.1007/s13337-012-0111-2.
-
(2013)
Indian J Virol
, vol.24
, pp. 54-58
-
-
Li, Q.1
Liu, Q.H.2
Huang, J.3
-
34
-
-
18044369826
-
Interaction of white spot syndrome virus VP26 protein with actin
-
Xie X, Yang F. 2005. Interaction of white spot syndrome virus VP26 protein with actin. Virology 336:93-99. https://doi.org/10.1016/j.virol.2005.03.011.
-
(2005)
Virology
, vol.336
, pp. 93-99
-
-
Xie, X.1
Yang, F.2
-
35
-
-
0026638841
-
Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P
-
Barik S, Banerjee AK. 1992. Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P. Proc Natl Acad Sci U S A 89:6570-6574. https://doi.org/10.1073/pnas.89.14.6570.
-
(1992)
Proc Natl Acad Sci U S A
, vol.89
, pp. 6570-6574
-
-
Barik, S.1
Banerjee, A.K.2
-
36
-
-
0013893833
-
The role of thiol groups in the structure and mechanism of action of arginine kinase
-
Virden R, Watts DC. 1966. The role of thiol groups in the structure and mechanism of action of arginine kinase. Biochem J 99:162-172. https://doi.org/10.1042/bj0990162.
-
(1966)
Biochem J
, vol.99
, pp. 162-172
-
-
Virden, R.1
Watts, D.C.2
-
37
-
-
14844282115
-
A novel C-type immulectin-3 from Manduca sexta is translocated from hemolymph into the cytoplasm of hemocytes
-
Yu XQ, Tracy ME, Ling E, Scholz FR, Trenczek T. 2005. A novel C-type immulectin-3 from Manduca sexta is translocated from hemolymph into the cytoplasm of hemocytes. Insect Biochem Mol Biol 35:285-295. https://doi.org/10.1016/j.ibmb.2005.01.004.
-
(2005)
Insect Biochem Mol Biol
, vol.35
, pp. 285-295
-
-
Yu, X.Q.1
Tracy, M.E.2
Ling, E.3
Scholz, F.R.4
Trenczek, T.5
-
38
-
-
79961199685
-
Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins
-
Chen AJ, Wang S, Zhao XF, Yu XQ, Wang JX. 2011. Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins. J Virol 85:8069-8079. https://doi.org/10.1128/JVI.00487-11.
-
(2011)
J Virol
, vol.85
, pp. 8069-8079
-
-
Chen, A.J.1
Wang, S.2
Zhao, X.F.3
Yu, X.Q.4
Wang, J.X.5
-
39
-
-
14744299030
-
Regulation of innate immunity by Rho GTPases
-
Bokoch GM. 2005. Regulation of innate immunity by Rho GTPases. Trends Cell Biol 15:163-171. https://doi.org/10.1016/j.tcb.2005.01.002.
-
(2005)
Trends Cell Biol
, vol.15
, pp. 163-171
-
-
Bokoch, G.M.1
-
40
-
-
77949912175
-
Molecular cloning and characterization of three crustins from the Chinese white shrimp, Fenneropenaeus chinensis
-
Sun C, Du XJ, Xu WT, Zhang HW, Zhao XF, Wang JX. 2010. Molecular cloning and characterization of three crustins from the Chinese white shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 28:517-524. https://doi.org/10.1016/j.fsi.2009.12.001.
-
(2010)
Fish Shellfish Immunol
, vol.28
, pp. 517-524
-
-
Sun, C.1
Du, X.J.2
Xu, W.T.3
Zhang, H.W.4
Zhao, X.F.5
Wang, J.X.6
-
41
-
-
84922509581
-
A novel crustin from Marsupenaeus japonicus promotes hemocyte phagocytosis
-
Liu N, Lan JF, Sun JJ, Jia WM, Zhao XF, Wang JX. 2015. A novel crustin from Marsupenaeus japonicus promotes hemocyte phagocytosis. Dev Comp Immunol 49:313-322. https://doi.org/10.1016/j.dci.2014.11.021.
-
(2015)
Dev Comp Immunol
, vol.49
, pp. 313-322
-
-
Liu, N.1
Lan, J.F.2
Sun, J.J.3
Jia, W.M.4
Zhao, X.F.5
Wang, J.X.6
-
42
-
-
84907812344
-
A new group of anti-lipopolysaccharide factors from Marsupenaeus japonicus functions in antibacterial response
-
Jiang HS, Zhang Q, Zhao YR, Jia WM, Zhao XF, Wang JX. 2015. A new group of anti-lipopolysaccharide factors from Marsupenaeus japonicus functions in antibacterial response. Dev Comp Immunol 48:33-42. https://doi.org/10.1016/j.dci.2014.09.001.
-
(2015)
Dev Comp Immunol
, vol.48
, pp. 33-42
-
-
Jiang, H.S.1
Zhang, Q.2
Zhao, Y.R.3
Jia, W.M.4
Zhao, X.F.5
Wang, J.X.6
-
43
-
-
68149172458
-
Molecular cloning and characterization of the translationally controlled tumor protein from Fenneropenaeus chinensis
-
Wang S, Zhao XF, Wang JX. 2009. Molecular cloning and characterization of the translationally controlled tumor protein from Fenneropenaeus chinensis. Mol Biol Rep 36:1683-1693. https://doi.org/10.1007/s11033-008-9369-2.
-
(2009)
Mol Biol Rep
, vol.36
, pp. 1683-1693
-
-
Wang, S.1
Zhao, X.F.2
Wang, J.X.3
-
44
-
-
77954065271
-
I-TASSER: a unified platform for automated protein structure and function prediction
-
Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725-738. https://doi.org/10.1038/nprot.2010.5.
-
(2010)
Nat Protoc
, vol.5
, pp. 725-738
-
-
Roy, A.1
Kucukural, A.2
Zhang, Y.3
-
45
-
-
0038526303
-
ZDOCK: an initial-stage protein-docking algorithm
-
Chen R, Li L, Weng Z. 2003. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80-87. https://doi.org/10.1002/prot.10389.
-
(2003)
Proteins
, vol.52
, pp. 80-87
-
-
Chen, R.1
Li, L.2
Weng, Z.3
-
46
-
-
0038450199
-
The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab, Callinectes sapidus
-
Kinsey ST, Lee BC. 2003. The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab, Callinectes sapidus. Comp Biochem Physiol B Biochem Mol Biol 135:521-531. https://doi.org/10.1016/S1096-4959(03)00121-0.
-
(2003)
Comp Biochem Physiol B Biochem Mol Biol
, vol.135
, pp. 521-531
-
-
Kinsey, S.T.1
Lee, B.C.2
-
47
-
-
35648964664
-
Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis
-
Wu QY, Li F, Zhu WJ, Wang XY. 2007. Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis. Comp Biochem Physiol B Biochem Mol Biol 148:355-362. https://doi.org/10.1016/j.cbpb.2007.07.002.
-
(2007)
Comp Biochem Physiol B Biochem Mol Biol
, vol.148
, pp. 355-362
-
-
Wu, Q.Y.1
Li, F.2
Zhu, W.J.3
Wang, X.Y.4
-
48
-
-
1642458394
-
Unique evolution of Bivalvia arginine kinases
-
Takeuchi M, Mizuta C, Uda K, Fujimoto N, Okamoto M, Suzuki T. 2004. Unique evolution of Bivalvia arginine kinases. Cell Mol Life Sci 61: 110-117. https://doi.org/10.1007/s00018-003-3384-1.
-
(2004)
Cell Mol Life Sci
, vol.61
, pp. 110-117
-
-
Takeuchi, M.1
Mizuta, C.2
Uda, K.3
Fujimoto, N.4
Okamoto, M.5
Suzuki, T.6
|