-
1
-
-
84865285341
-
Modular organization of the mammalian Golgi apparatus
-
1 Nakamura, N., Wei, J.H., Seemann, J., Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 24 (2012), 467–474.
-
(2012)
Curr Opin Cell Biol
, vol.24
, pp. 467-474
-
-
Nakamura, N.1
Wei, J.H.2
Seemann, J.3
-
2
-
-
84878253184
-
Organization of the ER–Golgi interface for membrane traffic control
-
2 Brandizzi, F., Barlowe, C., Organization of the ER–Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14 (2013), 382–392.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 382-392
-
-
Brandizzi, F.1
Barlowe, C.2
-
3
-
-
85009228878
-
Protein sorting at the ER–Golgi interface
-
3 Gomez-Navarro, N., Miller, E., Protein sorting at the ER–Golgi interface. J Cell Biol 19 (2016), 769–778.
-
(2016)
J Cell Biol
, vol.19
, pp. 769-778
-
-
Gomez-Navarro, N.1
Miller, E.2
-
5
-
-
84900818805
-
Golgi compartmentation and identity
-
5 Papanikou, E., Glick, B.S., Golgi compartmentation and identity. Curr Opin Cell Biol 29 (2014), 74–81.
-
(2014)
Curr Opin Cell Biol
, vol.29
, pp. 74-81
-
-
Papanikou, E.1
Glick, B.S.2
-
6
-
-
84988324922
-
COPI selectively drives maturation of the early Golgi
-
6 Papanikou, E., Day, K.J., Austin, J., Glick, B.S., COPI selectively drives maturation of the early Golgi. Elife, 4, 2015.
-
(2015)
Elife
, vol.4
-
-
Papanikou, E.1
Day, K.J.2
Austin, J.3
Glick, B.S.4
-
7
-
-
84986182446
-
Stacking the odds for Golgi cisternal maturation
-
7 Mani, S., Thattai, M., Stacking the odds for Golgi cisternal maturation. Elife, 5, 2016.
-
(2016)
Elife
, vol.5
-
-
Mani, S.1
Thattai, M.2
-
8
-
-
84931028263
-
Protein sorting at the trans-Golgi network
-
8 Guo, Y., Sirkis, D.W., Schekman, R., Protein sorting at the trans-Golgi network. Annu Rev Cell Dev Biol 30 (2014), 169–206.
-
(2014)
Annu Rev Cell Dev Biol
, vol.30
, pp. 169-206
-
-
Guo, Y.1
Sirkis, D.W.2
Schekman, R.3
-
9
-
-
84995486119
-
Bidirectional traffic between the Golgi and the endosomes—machineries and regulation
-
9 Progida, C., Bakke, O., Bidirectional traffic between the Golgi and the endosomes—machineries and regulation. J Cell Sci 129 (2016), 3971–3982.
-
(2016)
J Cell Sci
, vol.129
, pp. 3971-3982
-
-
Progida, C.1
Bakke, O.2
-
10
-
-
85043368012
-
The golgin family of coiled-coil tethering proteins
-
10 Witkos, T.M., Lowe, M., The golgin family of coiled-coil tethering proteins. Front Cell Dev Biol, 3, 2015, 86.
-
(2015)
Front Cell Dev Biol
, vol.3
, pp. 86
-
-
Witkos, T.M.1
Lowe, M.2
-
11
-
-
84960155907
-
Finding the Golgi: golgin coiled-coil proteins show the way
-
11 Gillingham, A.K., Munro, S., Finding the Golgi: golgin coiled-coil proteins show the way. Trends Cell Biol 26 (2016), 399–408.
-
(2016)
Trends Cell Biol
, vol.26
, pp. 399-408
-
-
Gillingham, A.K.1
Munro, S.2
-
12
-
-
84910104915
-
Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins
-
A key paper showing that golgins are sufficient to tether transport vesicles and that golgin-mediated tethering occurs in a specific manner. The results indicate that golgins contribute to the specificity of trafficking at the Golgi apparatus.
-
12•• Wong, M., Munro, S., Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science, 346, 2014, 1256898 A key paper showing that golgins are sufficient to tether transport vesicles and that golgin-mediated tethering occurs in a specific manner. The results indicate that golgins contribute to the specificity of trafficking at the Golgi apparatus.
-
(2014)
Science
, vol.346
, pp. 1256898
-
-
Wong, M.1
Munro, S.2
-
13
-
-
43249126878
-
Asymmetric tethering of flat and curved lipid membranes by a golgin
-
13 Drin, G., Morello, V., Casella, J.F., Gounon, P., Antonny, B., Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320 (2008), 670–673.
-
(2008)
Science
, vol.320
, pp. 670-673
-
-
Drin, G.1
Morello, V.2
Casella, J.F.3
Gounon, P.4
Antonny, B.5
-
14
-
-
84921882527
-
Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210
-
This paper shows that the ALPS motif and Rab2 binding site in GMAP-210 both contribute to functionality of the protein, with Rab2 binding likely operating downstream from the initial ALPS-mediated tethering event.
-
14• Sato, K., Roboti, P., Mironov, A.A., Lowe, M., Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 26 (2015), 537–553 This paper shows that the ALPS motif and Rab2 binding site in GMAP-210 both contribute to functionality of the protein, with Rab2 binding likely operating downstream from the initial ALPS-mediated tethering event.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 537-553
-
-
Sato, K.1
Roboti, P.2
Mironov, A.A.3
Lowe, M.4
-
15
-
-
84979645497
-
A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition
-
In this paper the features of transport vesicles that are recognized by the ALPS motif of GMAP-210 are identifed. It is shown that the vesicle lipids and the packing of these lipids are recognized in a specific manner by the ALPS motif to impart selectivity to GMAP-210-mediated tethering.
-
15• Magdeleine, M., Gautier, R., Gounon, P., Barelli, H., Vanni, S., Antonny, B., A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. Elife, 5, 2016 In this paper the features of transport vesicles that are recognized by the ALPS motif of GMAP-210 are identifed. It is shown that the vesicle lipids and the packing of these lipids are recognized in a specific manner by the ALPS motif to impart selectivity to GMAP-210-mediated tethering.
-
(2016)
Elife
, vol.5
-
-
Magdeleine, M.1
Gautier, R.2
Gounon, P.3
Barelli, H.4
Vanni, S.5
Antonny, B.6
-
16
-
-
0030953187
-
The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner
-
16 Nakamura, N., Lowe, M., Levine, T.P., Rabouille, C., Warren, G., The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89 (1997), 445–455.
-
(1997)
Cell
, vol.89
, pp. 445-455
-
-
Nakamura, N.1
Lowe, M.2
Levine, T.P.3
Rabouille, C.4
Warren, G.5
-
17
-
-
0033999010
-
The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo
-
17 Seemann, J., Jokitalo, E.J., Warren, G., The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol Biol Cell 11 (2000), 635–645.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 635-645
-
-
Seemann, J.1
Jokitalo, E.J.2
Warren, G.3
-
18
-
-
0035203528
-
The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment
-
18 Marra, P., Maffucci, T., Daniele, T., Tullio, G.D., Ikehara, Y., Chan, E.K., Luini, A., Beznoussenko, G., Mironov, A., De Matteis, M.A., The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat Cell Biol 3 (2001), 1101–1113.
-
(2001)
Nat Cell Biol
, vol.3
, pp. 1101-1113
-
-
Marra, P.1
Maffucci, T.2
Daniele, T.3
Tullio, G.D.4
Ikehara, Y.5
Chan, E.K.6
Luini, A.7
Beznoussenko, G.8
Mironov, A.9
De Matteis, M.A.10
-
19
-
-
85010303342
-
The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs
-
This paper identifies motifs in the amino terminal regions of golgins that mediate vesicle tethering. The motifs are specific such that golgins in different Golgi regions use different motifs for tethering of distinct vesicle types.
-
19•• Wong, M., Gillingham, A.K., Munro, S., The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol, 15, 2017, 3, 10.1186/s12915-016-0345-3 This paper identifies motifs in the amino terminal regions of golgins that mediate vesicle tethering. The motifs are specific such that golgins in different Golgi regions use different motifs for tethering of distinct vesicle types.
-
(2017)
BMC Biol
, vol.15
, pp. 3
-
-
Wong, M.1
Gillingham, A.K.2
Munro, S.3
-
20
-
-
84968796233
-
Protein flexibility is required for vesicle tethering at the Golgi
-
This study shows that the golgin GCC185 can adopt a shorter bent conformation due to its inherent structural flexibility. This flexibility is important for GCC185 function at the Golgi. It is also shown that the extreme amino terminus of GCC185 can adopt a splayed conformation to capture vesicles.
-
20•• Cheung, P.Y., Limouse, C., Mabuchi, H., Pfeffer, S.R., Protein flexibility is required for vesicle tethering at the Golgi. Elife, 4, 2015, CC185 This study shows that the golgin GCC185 can adopt a shorter bent conformation due to its inherent structural flexibility. This flexibility is important for GCC185 function at the Golgi. It is also shown that the extreme amino terminus of GCC185 can adopt a splayed conformation to capture vesicles.
-
(2015)
Elife
, vol.4
, pp. CC185
-
-
Cheung, P.Y.1
Limouse, C.2
Mabuchi, H.3
Pfeffer, S.R.4
-
21
-
-
58149181656
-
Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins
-
21 Sinka, R., Gillingham, A.K., Kondylis, V., Munro, S., Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. J Cell Biol 183 (2008), 607–615.
-
(2008)
J Cell Biol
, vol.183
, pp. 607-615
-
-
Sinka, R.1
Gillingham, A.K.2
Kondylis, V.3
Munro, S.4
-
22
-
-
84860311872
-
The golgin coiled-coil proteins of the Golgi apparatus
-
22 Munro, S., The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb Perspect Biol, 3, 2011.
-
(2011)
Cold Spring Harb Perspect Biol
, vol.3
-
-
Munro, S.1
-
23
-
-
84984653623
-
An endosomal tether undergoes an entropic collapse to bring vesicles together
-
It is shown that the endosomal coiled-coil tethering protein EEA1 undergoes collapse upon binding to active Rab5, shortening the length of the protein that is important for mediating the transition from endosome tethering to fusion.
-
23• Murray, D.H., Jahnel, M., Lauer, J., Avellaneda, M.J., Brouilly, N., Cezanne, A., Morales-Navarrete, H., Perini, E.D., Ferguson, C., Lupas, A.N., et al. An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537 (2016), 107–111 It is shown that the endosomal coiled-coil tethering protein EEA1 undergoes collapse upon binding to active Rab5, shortening the length of the protein that is important for mediating the transition from endosome tethering to fusion.
-
(2016)
Nature
, vol.537
, pp. 107-111
-
-
Murray, D.H.1
Jahnel, M.2
Lauer, J.3
Avellaneda, M.J.4
Brouilly, N.5
Cezanne, A.6
Morales-Navarrete, H.7
Perini, E.D.8
Ferguson, C.9
Lupas, A.N.10
-
24
-
-
84930630268
-
GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations
-
24 Ishida, R., Yamamoto, A., Nakayama, K., Sohda, M., Misumi, Y., Yasunaga, T., Nakamura, N., GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations. FEBS J 282 (2015), 2232–2244.
-
(2015)
FEBS J
, vol.282
, pp. 2232-2244
-
-
Ishida, R.1
Yamamoto, A.2
Nakayama, K.3
Sohda, M.4
Misumi, Y.5
Yasunaga, T.6
Nakamura, N.7
-
25
-
-
0036629335
-
Vesicle tethering complexes in membrane traffic
-
25 Whyte, J.R., Munro, S., Vesicle tethering complexes in membrane traffic. J Cell Sci 115 (2002), 2627–2637.
-
(2002)
J Cell Sci
, vol.115
, pp. 2627-2637
-
-
Whyte, J.R.1
Munro, S.2
-
26
-
-
84904619821
-
In sickness and in health: the role of TRAPP and associated proteins in disease
-
26 Brunet, S., Sacher, M., In sickness and in health: the role of TRAPP and associated proteins in disease. Traffic 15 (2014), 803–818.
-
(2014)
Traffic
, vol.15
, pp. 803-818
-
-
Brunet, S.1
Sacher, M.2
-
27
-
-
84979202073
-
TRAPP complexes in secretion and autophagy
-
27 Kim, J.J., Lipatova, Z., Segev, N., TRAPP complexes in secretion and autophagy. Front Cell Dev Biol, 4, 2016, 20.
-
(2016)
Front Cell Dev Biol
, vol.4
, pp. 20
-
-
Kim, J.J.1
Lipatova, Z.2
Segev, N.3
-
28
-
-
0034676094
-
TRAPP stimulates guanine nucleotide exchange on Ypt1p
-
28 Wang, W., Sacher, M., Ferro-Novick, S., TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151 (2000), 289–296.
-
(2000)
J Cell Biol
, vol.151
, pp. 289-296
-
-
Wang, W.1
Sacher, M.2
Ferro-Novick, S.3
-
29
-
-
0033638091
-
The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32
-
29 Jones, S., Newman, C., Liu, F., Segev, N., The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell 11 (2000), 4403–4411.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 4403-4411
-
-
Jones, S.1
Newman, C.2
Liu, F.3
Segev, N.4
-
30
-
-
70350115572
-
mTrs130 is a component of a mammalian TRAPPII complex, a Rab1 GEF that binds to COPI-coated vesicles
-
30 Yamasaki, A., Menon, S., Yu, S., Barrowman, J., Meerloo, T., Oorschot, V., Klumperman, J., Satoh, A., Ferro-Novick, S., mTrs130 is a component of a mammalian TRAPPII complex, a Rab1 GEF that binds to COPI-coated vesicles. Mol Biol Cell 20 (2009), 4205–4215.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 4205-4215
-
-
Yamasaki, A.1
Menon, S.2
Yu, S.3
Barrowman, J.4
Meerloo, T.5
Oorschot, V.6
Klumperman, J.7
Satoh, A.8
Ferro-Novick, S.9
-
31
-
-
33750499290
-
TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF
-
31 Morozova, N., Liang, Y., Tokarev, A.A., Chen, S.H., Cox, R., Andrejic, J., Lipatova, Z., Sciorra, V.A., Emr, S.D., Segev, N., TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF. Nat Cell Biol 8 (2006), 1263–1269.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 1263-1269
-
-
Morozova, N.1
Liang, Y.2
Tokarev, A.A.3
Chen, S.H.4
Cox, R.5
Andrejic, J.6
Lipatova, Z.7
Sciorra, V.A.8
Emr, S.D.9
Segev, N.10
-
32
-
-
85004038635
-
GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis
-
32 Thomas, L.L., Fromme, J.C., GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. J Cell Biol 215 (2016), 499–513.
-
(2016)
J Cell Biol
, vol.215
, pp. 499-513
-
-
Thomas, L.L.1
Fromme, J.C.2
-
33
-
-
84862259443
-
Re‘COG'nition at the Golgi
-
33 Miller, V.J., Ungar, D., Re‘COG'nition at the Golgi. Traffic 13 (2012), 891–897.
-
(2012)
Traffic
, vol.13
, pp. 891-897
-
-
Miller, V.J.1
Ungar, D.2
-
34
-
-
84887478931
-
The Golgi puppet master: COG complex at center stage of membrane trafficking interactions
-
34 Willett, R., Ungar, D., Lupashin, V., The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140 (2013), 271–283.
-
(2013)
Histochem Cell Biol
, vol.140
, pp. 271-283
-
-
Willett, R.1
Ungar, D.2
Lupashin, V.3
-
35
-
-
79952103459
-
Transport according to GARP: receiving retrograde cargo at the trans-Golgi network
-
35 Bonifacino, J.S., Hierro, A., Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol 21 (2011), 159–167.
-
(2011)
Trends Cell Biol
, vol.21
, pp. 159-167
-
-
Bonifacino, J.S.1
Hierro, A.2
-
36
-
-
78049368534
-
Tethering factors as organizers of intracellular vesicular traffic
-
36 Yu, I.M., Hughson, F.M., Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26 (2010), 137–156.
-
(2010)
Annu Rev Cell Dev Biol
, vol.26
, pp. 137-156
-
-
Yu, I.M.1
Hughson, F.M.2
-
37
-
-
78549285917
-
Molecular organization of the COG vesicle tethering complex
-
37 Lees, J.A., Yip, C.K., Walz, T., Hughson, F.M., Molecular organization of the COG vesicle tethering complex. Nat Struct Mol Biol 17 (2010), 1292–1297.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1292-1297
-
-
Lees, J.A.1
Yip, C.K.2
Walz, T.3
Hughson, F.M.4
-
38
-
-
84978674897
-
CATCHR, HOPS and CORVET tethering complexes share a similar architecture
-
This study shows that the structures of the Golgi-localized COG1–4 sub-complex and GARP complex and endosomal HOPS and CORVET complexes share a conserved structure, as determined by electron microscopy. They have an elongated spidery shape with flexible legs protruding from a central hub. See also Ref. [39].
-
38•• Chou, H.T., Dukovski, D., Chambers, M.G., Reinisch, K.M., Walz, T., CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat Struct Mol Biol 23 (2016), 761–763 This study shows that the structures of the Golgi-localized COG1–4 sub-complex and GARP complex and endosomal HOPS and CORVET complexes share a conserved structure, as determined by electron microscopy. They have an elongated spidery shape with flexible legs protruding from a central hub. See also Ref. [39].
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 761-763
-
-
Chou, H.T.1
Dukovski, D.2
Chambers, M.G.3
Reinisch, K.M.4
Walz, T.5
-
39
-
-
84978718885
-
Molecular architecture of the complete COG tethering complex
-
This study describes the structure of the entire octameric COG complex, as revealed by electron microscopy. It has 4–5 flexible legs that result in an overall extended conformation. See also Ref. [38].
-
39•• Ha, J.Y., Chou, H.T., Ungar, D., Yip, C.K., Walz, T., Hughson, F.M., Molecular architecture of the complete COG tethering complex. Nat Struct Mol Biol 23 (2016), 758–760 This study describes the structure of the entire octameric COG complex, as revealed by electron microscopy. It has 4–5 flexible legs that result in an overall extended conformation. See also Ref. [38].
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 758-760
-
-
Ha, J.Y.1
Chou, H.T.2
Ungar, D.3
Yip, C.K.4
Walz, T.5
Hughson, F.M.6
-
40
-
-
84875886094
-
COG complexes form spatial landmarks for distinct SNARE complexes
-
40 Willett, R., Kudlyk, T., Pokrovskaya, I., Schonherr, R., Ungar, D., Duden, R., Lupashin, V., COG complexes form spatial landmarks for distinct SNARE complexes. Nat Commun, 4, 2013, 1553.
-
(2013)
Nat Commun
, vol.4
, pp. 1553
-
-
Willett, R.1
Kudlyk, T.2
Pokrovskaya, I.3
Schonherr, R.4
Ungar, D.5
Duden, R.6
Lupashin, V.7
-
41
-
-
84987899433
-
TSSC1 is novel component of the endosomal retrieval machinery
-
41 Gershlick, D.C., Schindler, C., Chen, Y., Bonifacino, J.S., TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 27 (2016), 2867–2878.
-
(2016)
Mol Biol Cell
, vol.27
, pp. 2867-2878
-
-
Gershlick, D.C.1
Schindler, C.2
Chen, Y.3
Bonifacino, J.S.4
-
42
-
-
37249008781
-
Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
-
42 Shestakova, A., Suvorova, E., Pavliv, O., Khaidakova, G., Lupashin, V., Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179 (2007), 1179–1192.
-
(2007)
J Cell Biol
, vol.179
, pp. 1179-1192
-
-
Shestakova, A.1
Suvorova, E.2
Pavliv, O.3
Khaidakova, G.4
Lupashin, V.5
-
43
-
-
70349319578
-
Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network
-
43 Perez-Victoria, F.J., Bonifacino, J.S., Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Mol Cell Biol 29 (2009), 5251–5263.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 5251-5263
-
-
Perez-Victoria, F.J.1
Bonifacino, J.S.2
-
44
-
-
84877912314
-
The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes
-
44 Laufman, O., Hong, W., Lev, S., The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J Cell Sci 126 (2013), 1506–1516.
-
(2013)
J Cell Sci
, vol.126
, pp. 1506-1516
-
-
Laufman, O.1
Hong, W.2
Lev, S.3
-
45
-
-
84979017473
-
COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex
-
This study shows that COG can exist as two distinct membrane-associated subcomplexes that reside either on the target Golgi membrane (COG1–4, lobe A) or the transport vesicle (COG5–8, lobe B), respectively. It suggests a mechanism for linking tethering with full assembly and functionality of the COG complex.
-
45•• Willett, R., Blackburn, J.B., Climer, L., Pokrovskaya, I., Kudlyk, T., Wang, W., Lupashin, V., COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci Rep, 6, 2016, 29139 This study shows that COG can exist as two distinct membrane-associated subcomplexes that reside either on the target Golgi membrane (COG1–4, lobe A) or the transport vesicle (COG5–8, lobe B), respectively. It suggests a mechanism for linking tethering with full assembly and functionality of the COG complex.
-
(2016)
Sci Rep
, vol.6
, pp. 29139
-
-
Willett, R.1
Blackburn, J.B.2
Climer, L.3
Pokrovskaya, I.4
Kudlyk, T.5
Wang, W.6
Lupashin, V.7
-
46
-
-
0035489304
-
The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic
-
46 Whyte, J.R., Munro, S., The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1 (2001), 527–537.
-
(2001)
Dev Cell
, vol.1
, pp. 527-537
-
-
Whyte, J.R.1
Munro, S.2
-
47
-
-
33747622293
-
SNAREs—engines for membrane fusion
-
47 Jahn, R., Scheller, R.H., SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7 (2006), 631–643.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 631-643
-
-
Jahn, R.1
Scheller, R.H.2
-
48
-
-
84863862237
-
Organization of SNAREs within the Golgi stack
-
48 Malsam, J., Sollner, T.H., Organization of SNAREs within the Golgi stack. Cold Spring Harb Perspect Biol, 3, 2011, a005249.
-
(2011)
Cold Spring Harb Perspect Biol
, vol.3
, pp. a005249
-
-
Malsam, J.1
Sollner, T.H.2
-
49
-
-
80052628194
-
GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering
-
49 Brown, F.C., Schindelhaim, C.H., Pfeffer, S.R., GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering. J Cell Biol 194 (2011), 779–787.
-
(2011)
J Cell Biol
, vol.194
, pp. 779-787
-
-
Brown, F.C.1
Schindelhaim, C.H.2
Pfeffer, S.R.3
-
50
-
-
85013863460
-
Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action
-
50 Cheung, P.Y., Pfeffer, S.R., Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action. Front Cell Dev Biol, 4, 2016, 18.
-
(2016)
Front Cell Dev Biol
, vol.4
, pp. 18
-
-
Cheung, P.Y.1
Pfeffer, S.R.2
-
51
-
-
0035999979
-
Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p
-
51 Ram, R.J., Li, B., Kaiser, C.A., Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13 (2002), 1484–1500.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 1484-1500
-
-
Ram, R.J.1
Li, B.2
Kaiser, C.A.3
-
52
-
-
0037071543
-
The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins
-
52 Suvorova, E.S., Duden, R., Lupashin, V.V., The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157 (2002), 631–643.
-
(2002)
J Cell Biol
, vol.157
, pp. 631-643
-
-
Suvorova, E.S.1
Duden, R.2
Lupashin, V.V.3
-
53
-
-
14744272136
-
Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells
-
53 Zolov, S.N., Lupashin, V.V., Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168 (2005), 747–759.
-
(2005)
J Cell Biol
, vol.168
, pp. 747-759
-
-
Zolov, S.N.1
Lupashin, V.V.2
-
54
-
-
84873630243
-
Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF)
-
54 Miller, V.J., Sharma, P., Kudlyk, T.A., Frost, L., Rofe, A.P., Watson, I.J., Duden, R., Lowe, M., Lupashin, V.V., Ungar, D., Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 288 (2013), 4229–4240.
-
(2013)
J Biol Chem
, vol.288
, pp. 4229-4240
-
-
Miller, V.J.1
Sharma, P.2
Kudlyk, T.A.3
Frost, L.4
Rofe, A.P.5
Watson, I.J.6
Duden, R.7
Lowe, M.8
Lupashin, V.V.9
Ungar, D.10
-
55
-
-
7944220328
-
Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments
-
55 Trucco, A., Polishchuk, R.S., Martella, O., Di Pentima, A., Fusella, A., Di Giandomenico, D., San Pietro, E., Beznoussenko, G.V., Polishchuk, E.V., Baldassarre, M., et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6 (2004), 1071–1081.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1071-1081
-
-
Trucco, A.1
Polishchuk, R.S.2
Martella, O.3
Di Pentima, A.4
Fusella, A.5
Di Giandomenico, D.6
San Pietro, E.7
Beznoussenko, G.V.8
Polishchuk, E.V.9
Baldassarre, M.10
-
56
-
-
84875327132
-
The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus
-
56 Koreishi, M., Gniadek, T.J., Yu, S., Masuda, J., Honjo, Y., Satoh, A., The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus. PLoS One, 8, 2013, e59821.
-
(2013)
PLoS One
, vol.8
, pp. e59821
-
-
Koreishi, M.1
Gniadek, T.J.2
Yu, S.3
Masuda, J.4
Honjo, Y.5
Satoh, A.6
-
57
-
-
84984869262
-
ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking
-
57 Schroter, S., Beckmann, S., Schmitt, H.D., ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking. EMBO J 35 (2016), 1935–1955.
-
(2016)
EMBO J
, vol.35
, pp. 1935-1955
-
-
Schroter, S.1
Beckmann, S.2
Schmitt, H.D.3
|