메뉴 건너뛰기




Volumn 47, Issue , 2017, Pages 16-23

Recognition and tethering of transport vesicles at the Golgi apparatus

Author keywords

[No Author keywords available]

Indexed keywords

GOLGI ASSOCIATED RETROGRADE PROTEIN; GOLGIN; PROTEIN; RAB PROTEIN; SNARE PROTEIN; UNCLASSIFIED DRUG; MEMBRANE FUSION PROTEIN; VESICULAR TRANSPORT PROTEIN;

EID: 85013763363     PISSN: 09550674     EISSN: 18790410     Source Type: Journal    
DOI: 10.1016/j.ceb.2017.02.003     Document Type: Review
Times cited : (48)

References (57)
  • 1
    • 84865285341 scopus 로고    scopus 로고
    • Modular organization of the mammalian Golgi apparatus
    • 1 Nakamura, N., Wei, J.H., Seemann, J., Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 24 (2012), 467–474.
    • (2012) Curr Opin Cell Biol , vol.24 , pp. 467-474
    • Nakamura, N.1    Wei, J.H.2    Seemann, J.3
  • 2
    • 84878253184 scopus 로고    scopus 로고
    • Organization of the ER–Golgi interface for membrane traffic control
    • 2 Brandizzi, F., Barlowe, C., Organization of the ER–Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14 (2013), 382–392.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 382-392
    • Brandizzi, F.1    Barlowe, C.2
  • 3
    • 85009228878 scopus 로고    scopus 로고
    • Protein sorting at the ER–Golgi interface
    • 3 Gomez-Navarro, N., Miller, E., Protein sorting at the ER–Golgi interface. J Cell Biol 19 (2016), 769–778.
    • (2016) J Cell Biol , vol.19 , pp. 769-778
    • Gomez-Navarro, N.1    Miller, E.2
  • 5
    • 84900818805 scopus 로고    scopus 로고
    • Golgi compartmentation and identity
    • 5 Papanikou, E., Glick, B.S., Golgi compartmentation and identity. Curr Opin Cell Biol 29 (2014), 74–81.
    • (2014) Curr Opin Cell Biol , vol.29 , pp. 74-81
    • Papanikou, E.1    Glick, B.S.2
  • 6
    • 84988324922 scopus 로고    scopus 로고
    • COPI selectively drives maturation of the early Golgi
    • 6 Papanikou, E., Day, K.J., Austin, J., Glick, B.S., COPI selectively drives maturation of the early Golgi. Elife, 4, 2015.
    • (2015) Elife , vol.4
    • Papanikou, E.1    Day, K.J.2    Austin, J.3    Glick, B.S.4
  • 7
    • 84986182446 scopus 로고    scopus 로고
    • Stacking the odds for Golgi cisternal maturation
    • 7 Mani, S., Thattai, M., Stacking the odds for Golgi cisternal maturation. Elife, 5, 2016.
    • (2016) Elife , vol.5
    • Mani, S.1    Thattai, M.2
  • 8
    • 84931028263 scopus 로고    scopus 로고
    • Protein sorting at the trans-Golgi network
    • 8 Guo, Y., Sirkis, D.W., Schekman, R., Protein sorting at the trans-Golgi network. Annu Rev Cell Dev Biol 30 (2014), 169–206.
    • (2014) Annu Rev Cell Dev Biol , vol.30 , pp. 169-206
    • Guo, Y.1    Sirkis, D.W.2    Schekman, R.3
  • 9
    • 84995486119 scopus 로고    scopus 로고
    • Bidirectional traffic between the Golgi and the endosomes—machineries and regulation
    • 9 Progida, C., Bakke, O., Bidirectional traffic between the Golgi and the endosomes—machineries and regulation. J Cell Sci 129 (2016), 3971–3982.
    • (2016) J Cell Sci , vol.129 , pp. 3971-3982
    • Progida, C.1    Bakke, O.2
  • 10
    • 85043368012 scopus 로고    scopus 로고
    • The golgin family of coiled-coil tethering proteins
    • 10 Witkos, T.M., Lowe, M., The golgin family of coiled-coil tethering proteins. Front Cell Dev Biol, 3, 2015, 86.
    • (2015) Front Cell Dev Biol , vol.3 , pp. 86
    • Witkos, T.M.1    Lowe, M.2
  • 11
    • 84960155907 scopus 로고    scopus 로고
    • Finding the Golgi: golgin coiled-coil proteins show the way
    • 11 Gillingham, A.K., Munro, S., Finding the Golgi: golgin coiled-coil proteins show the way. Trends Cell Biol 26 (2016), 399–408.
    • (2016) Trends Cell Biol , vol.26 , pp. 399-408
    • Gillingham, A.K.1    Munro, S.2
  • 12
    • 84910104915 scopus 로고    scopus 로고
    • Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins
    • A key paper showing that golgins are sufficient to tether transport vesicles and that golgin-mediated tethering occurs in a specific manner. The results indicate that golgins contribute to the specificity of trafficking at the Golgi apparatus.
    • 12•• Wong, M., Munro, S., Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science, 346, 2014, 1256898 A key paper showing that golgins are sufficient to tether transport vesicles and that golgin-mediated tethering occurs in a specific manner. The results indicate that golgins contribute to the specificity of trafficking at the Golgi apparatus.
    • (2014) Science , vol.346 , pp. 1256898
    • Wong, M.1    Munro, S.2
  • 13
    • 43249126878 scopus 로고    scopus 로고
    • Asymmetric tethering of flat and curved lipid membranes by a golgin
    • 13 Drin, G., Morello, V., Casella, J.F., Gounon, P., Antonny, B., Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320 (2008), 670–673.
    • (2008) Science , vol.320 , pp. 670-673
    • Drin, G.1    Morello, V.2    Casella, J.F.3    Gounon, P.4    Antonny, B.5
  • 14
    • 84921882527 scopus 로고    scopus 로고
    • Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210
    • This paper shows that the ALPS motif and Rab2 binding site in GMAP-210 both contribute to functionality of the protein, with Rab2 binding likely operating downstream from the initial ALPS-mediated tethering event.
    • 14• Sato, K., Roboti, P., Mironov, A.A., Lowe, M., Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 26 (2015), 537–553 This paper shows that the ALPS motif and Rab2 binding site in GMAP-210 both contribute to functionality of the protein, with Rab2 binding likely operating downstream from the initial ALPS-mediated tethering event.
    • (2015) Mol Biol Cell , vol.26 , pp. 537-553
    • Sato, K.1    Roboti, P.2    Mironov, A.A.3    Lowe, M.4
  • 15
    • 84979645497 scopus 로고    scopus 로고
    • A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition
    • In this paper the features of transport vesicles that are recognized by the ALPS motif of GMAP-210 are identifed. It is shown that the vesicle lipids and the packing of these lipids are recognized in a specific manner by the ALPS motif to impart selectivity to GMAP-210-mediated tethering.
    • 15• Magdeleine, M., Gautier, R., Gounon, P., Barelli, H., Vanni, S., Antonny, B., A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. Elife, 5, 2016 In this paper the features of transport vesicles that are recognized by the ALPS motif of GMAP-210 are identifed. It is shown that the vesicle lipids and the packing of these lipids are recognized in a specific manner by the ALPS motif to impart selectivity to GMAP-210-mediated tethering.
    • (2016) Elife , vol.5
    • Magdeleine, M.1    Gautier, R.2    Gounon, P.3    Barelli, H.4    Vanni, S.5    Antonny, B.6
  • 16
    • 0030953187 scopus 로고    scopus 로고
    • The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner
    • 16 Nakamura, N., Lowe, M., Levine, T.P., Rabouille, C., Warren, G., The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89 (1997), 445–455.
    • (1997) Cell , vol.89 , pp. 445-455
    • Nakamura, N.1    Lowe, M.2    Levine, T.P.3    Rabouille, C.4    Warren, G.5
  • 17
    • 0033999010 scopus 로고    scopus 로고
    • The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo
    • 17 Seemann, J., Jokitalo, E.J., Warren, G., The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol Biol Cell 11 (2000), 635–645.
    • (2000) Mol Biol Cell , vol.11 , pp. 635-645
    • Seemann, J.1    Jokitalo, E.J.2    Warren, G.3
  • 19
    • 85010303342 scopus 로고    scopus 로고
    • The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs
    • This paper identifies motifs in the amino terminal regions of golgins that mediate vesicle tethering. The motifs are specific such that golgins in different Golgi regions use different motifs for tethering of distinct vesicle types.
    • 19•• Wong, M., Gillingham, A.K., Munro, S., The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol, 15, 2017, 3, 10.1186/s12915-016-0345-3 This paper identifies motifs in the amino terminal regions of golgins that mediate vesicle tethering. The motifs are specific such that golgins in different Golgi regions use different motifs for tethering of distinct vesicle types.
    • (2017) BMC Biol , vol.15 , pp. 3
    • Wong, M.1    Gillingham, A.K.2    Munro, S.3
  • 20
    • 84968796233 scopus 로고    scopus 로고
    • Protein flexibility is required for vesicle tethering at the Golgi
    • This study shows that the golgin GCC185 can adopt a shorter bent conformation due to its inherent structural flexibility. This flexibility is important for GCC185 function at the Golgi. It is also shown that the extreme amino terminus of GCC185 can adopt a splayed conformation to capture vesicles.
    • 20•• Cheung, P.Y., Limouse, C., Mabuchi, H., Pfeffer, S.R., Protein flexibility is required for vesicle tethering at the Golgi. Elife, 4, 2015, CC185 This study shows that the golgin GCC185 can adopt a shorter bent conformation due to its inherent structural flexibility. This flexibility is important for GCC185 function at the Golgi. It is also shown that the extreme amino terminus of GCC185 can adopt a splayed conformation to capture vesicles.
    • (2015) Elife , vol.4 , pp. CC185
    • Cheung, P.Y.1    Limouse, C.2    Mabuchi, H.3    Pfeffer, S.R.4
  • 21
    • 58149181656 scopus 로고    scopus 로고
    • Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins
    • 21 Sinka, R., Gillingham, A.K., Kondylis, V., Munro, S., Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. J Cell Biol 183 (2008), 607–615.
    • (2008) J Cell Biol , vol.183 , pp. 607-615
    • Sinka, R.1    Gillingham, A.K.2    Kondylis, V.3    Munro, S.4
  • 22
    • 84860311872 scopus 로고    scopus 로고
    • The golgin coiled-coil proteins of the Golgi apparatus
    • 22 Munro, S., The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb Perspect Biol, 3, 2011.
    • (2011) Cold Spring Harb Perspect Biol , vol.3
    • Munro, S.1
  • 23
    • 84984653623 scopus 로고    scopus 로고
    • An endosomal tether undergoes an entropic collapse to bring vesicles together
    • It is shown that the endosomal coiled-coil tethering protein EEA1 undergoes collapse upon binding to active Rab5, shortening the length of the protein that is important for mediating the transition from endosome tethering to fusion.
    • 23• Murray, D.H., Jahnel, M., Lauer, J., Avellaneda, M.J., Brouilly, N., Cezanne, A., Morales-Navarrete, H., Perini, E.D., Ferguson, C., Lupas, A.N., et al. An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537 (2016), 107–111 It is shown that the endosomal coiled-coil tethering protein EEA1 undergoes collapse upon binding to active Rab5, shortening the length of the protein that is important for mediating the transition from endosome tethering to fusion.
    • (2016) Nature , vol.537 , pp. 107-111
    • Murray, D.H.1    Jahnel, M.2    Lauer, J.3    Avellaneda, M.J.4    Brouilly, N.5    Cezanne, A.6    Morales-Navarrete, H.7    Perini, E.D.8    Ferguson, C.9    Lupas, A.N.10
  • 24
    • 84930630268 scopus 로고    scopus 로고
    • GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations
    • 24 Ishida, R., Yamamoto, A., Nakayama, K., Sohda, M., Misumi, Y., Yasunaga, T., Nakamura, N., GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations. FEBS J 282 (2015), 2232–2244.
    • (2015) FEBS J , vol.282 , pp. 2232-2244
    • Ishida, R.1    Yamamoto, A.2    Nakayama, K.3    Sohda, M.4    Misumi, Y.5    Yasunaga, T.6    Nakamura, N.7
  • 25
    • 0036629335 scopus 로고    scopus 로고
    • Vesicle tethering complexes in membrane traffic
    • 25 Whyte, J.R., Munro, S., Vesicle tethering complexes in membrane traffic. J Cell Sci 115 (2002), 2627–2637.
    • (2002) J Cell Sci , vol.115 , pp. 2627-2637
    • Whyte, J.R.1    Munro, S.2
  • 26
    • 84904619821 scopus 로고    scopus 로고
    • In sickness and in health: the role of TRAPP and associated proteins in disease
    • 26 Brunet, S., Sacher, M., In sickness and in health: the role of TRAPP and associated proteins in disease. Traffic 15 (2014), 803–818.
    • (2014) Traffic , vol.15 , pp. 803-818
    • Brunet, S.1    Sacher, M.2
  • 27
  • 28
    • 0034676094 scopus 로고    scopus 로고
    • TRAPP stimulates guanine nucleotide exchange on Ypt1p
    • 28 Wang, W., Sacher, M., Ferro-Novick, S., TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151 (2000), 289–296.
    • (2000) J Cell Biol , vol.151 , pp. 289-296
    • Wang, W.1    Sacher, M.2    Ferro-Novick, S.3
  • 29
    • 0033638091 scopus 로고    scopus 로고
    • The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32
    • 29 Jones, S., Newman, C., Liu, F., Segev, N., The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell 11 (2000), 4403–4411.
    • (2000) Mol Biol Cell , vol.11 , pp. 4403-4411
    • Jones, S.1    Newman, C.2    Liu, F.3    Segev, N.4
  • 32
    • 85004038635 scopus 로고    scopus 로고
    • GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis
    • 32 Thomas, L.L., Fromme, J.C., GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. J Cell Biol 215 (2016), 499–513.
    • (2016) J Cell Biol , vol.215 , pp. 499-513
    • Thomas, L.L.1    Fromme, J.C.2
  • 33
    • 84862259443 scopus 로고    scopus 로고
    • Re‘COG'nition at the Golgi
    • 33 Miller, V.J., Ungar, D., Re‘COG'nition at the Golgi. Traffic 13 (2012), 891–897.
    • (2012) Traffic , vol.13 , pp. 891-897
    • Miller, V.J.1    Ungar, D.2
  • 34
    • 84887478931 scopus 로고    scopus 로고
    • The Golgi puppet master: COG complex at center stage of membrane trafficking interactions
    • 34 Willett, R., Ungar, D., Lupashin, V., The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140 (2013), 271–283.
    • (2013) Histochem Cell Biol , vol.140 , pp. 271-283
    • Willett, R.1    Ungar, D.2    Lupashin, V.3
  • 35
    • 79952103459 scopus 로고    scopus 로고
    • Transport according to GARP: receiving retrograde cargo at the trans-Golgi network
    • 35 Bonifacino, J.S., Hierro, A., Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol 21 (2011), 159–167.
    • (2011) Trends Cell Biol , vol.21 , pp. 159-167
    • Bonifacino, J.S.1    Hierro, A.2
  • 36
    • 78049368534 scopus 로고    scopus 로고
    • Tethering factors as organizers of intracellular vesicular traffic
    • 36 Yu, I.M., Hughson, F.M., Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26 (2010), 137–156.
    • (2010) Annu Rev Cell Dev Biol , vol.26 , pp. 137-156
    • Yu, I.M.1    Hughson, F.M.2
  • 37
    • 78549285917 scopus 로고    scopus 로고
    • Molecular organization of the COG vesicle tethering complex
    • 37 Lees, J.A., Yip, C.K., Walz, T., Hughson, F.M., Molecular organization of the COG vesicle tethering complex. Nat Struct Mol Biol 17 (2010), 1292–1297.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1292-1297
    • Lees, J.A.1    Yip, C.K.2    Walz, T.3    Hughson, F.M.4
  • 38
    • 84978674897 scopus 로고    scopus 로고
    • CATCHR, HOPS and CORVET tethering complexes share a similar architecture
    • This study shows that the structures of the Golgi-localized COG1–4 sub-complex and GARP complex and endosomal HOPS and CORVET complexes share a conserved structure, as determined by electron microscopy. They have an elongated spidery shape with flexible legs protruding from a central hub. See also Ref. [39].
    • 38•• Chou, H.T., Dukovski, D., Chambers, M.G., Reinisch, K.M., Walz, T., CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat Struct Mol Biol 23 (2016), 761–763 This study shows that the structures of the Golgi-localized COG1–4 sub-complex and GARP complex and endosomal HOPS and CORVET complexes share a conserved structure, as determined by electron microscopy. They have an elongated spidery shape with flexible legs protruding from a central hub. See also Ref. [39].
    • (2016) Nat Struct Mol Biol , vol.23 , pp. 761-763
    • Chou, H.T.1    Dukovski, D.2    Chambers, M.G.3    Reinisch, K.M.4    Walz, T.5
  • 39
    • 84978718885 scopus 로고    scopus 로고
    • Molecular architecture of the complete COG tethering complex
    • This study describes the structure of the entire octameric COG complex, as revealed by electron microscopy. It has 4–5 flexible legs that result in an overall extended conformation. See also Ref. [38].
    • 39•• Ha, J.Y., Chou, H.T., Ungar, D., Yip, C.K., Walz, T., Hughson, F.M., Molecular architecture of the complete COG tethering complex. Nat Struct Mol Biol 23 (2016), 758–760 This study describes the structure of the entire octameric COG complex, as revealed by electron microscopy. It has 4–5 flexible legs that result in an overall extended conformation. See also Ref. [38].
    • (2016) Nat Struct Mol Biol , vol.23 , pp. 758-760
    • Ha, J.Y.1    Chou, H.T.2    Ungar, D.3    Yip, C.K.4    Walz, T.5    Hughson, F.M.6
  • 41
    • 84987899433 scopus 로고    scopus 로고
    • TSSC1 is novel component of the endosomal retrieval machinery
    • 41 Gershlick, D.C., Schindler, C., Chen, Y., Bonifacino, J.S., TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell 27 (2016), 2867–2878.
    • (2016) Mol Biol Cell , vol.27 , pp. 2867-2878
    • Gershlick, D.C.1    Schindler, C.2    Chen, Y.3    Bonifacino, J.S.4
  • 42
    • 37249008781 scopus 로고    scopus 로고
    • Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
    • 42 Shestakova, A., Suvorova, E., Pavliv, O., Khaidakova, G., Lupashin, V., Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179 (2007), 1179–1192.
    • (2007) J Cell Biol , vol.179 , pp. 1179-1192
    • Shestakova, A.1    Suvorova, E.2    Pavliv, O.3    Khaidakova, G.4    Lupashin, V.5
  • 43
    • 70349319578 scopus 로고    scopus 로고
    • Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network
    • 43 Perez-Victoria, F.J., Bonifacino, J.S., Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. Mol Cell Biol 29 (2009), 5251–5263.
    • (2009) Mol Cell Biol , vol.29 , pp. 5251-5263
    • Perez-Victoria, F.J.1    Bonifacino, J.S.2
  • 44
    • 84877912314 scopus 로고    scopus 로고
    • The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes
    • 44 Laufman, O., Hong, W., Lev, S., The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J Cell Sci 126 (2013), 1506–1516.
    • (2013) J Cell Sci , vol.126 , pp. 1506-1516
    • Laufman, O.1    Hong, W.2    Lev, S.3
  • 45
    • 84979017473 scopus 로고    scopus 로고
    • COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex
    • This study shows that COG can exist as two distinct membrane-associated subcomplexes that reside either on the target Golgi membrane (COG1–4, lobe A) or the transport vesicle (COG5–8, lobe B), respectively. It suggests a mechanism for linking tethering with full assembly and functionality of the COG complex.
    • 45•• Willett, R., Blackburn, J.B., Climer, L., Pokrovskaya, I., Kudlyk, T., Wang, W., Lupashin, V., COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci Rep, 6, 2016, 29139 This study shows that COG can exist as two distinct membrane-associated subcomplexes that reside either on the target Golgi membrane (COG1–4, lobe A) or the transport vesicle (COG5–8, lobe B), respectively. It suggests a mechanism for linking tethering with full assembly and functionality of the COG complex.
    • (2016) Sci Rep , vol.6 , pp. 29139
    • Willett, R.1    Blackburn, J.B.2    Climer, L.3    Pokrovskaya, I.4    Kudlyk, T.5    Wang, W.6    Lupashin, V.7
  • 46
    • 0035489304 scopus 로고    scopus 로고
    • The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic
    • 46 Whyte, J.R., Munro, S., The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1 (2001), 527–537.
    • (2001) Dev Cell , vol.1 , pp. 527-537
    • Whyte, J.R.1    Munro, S.2
  • 47
    • 33747622293 scopus 로고    scopus 로고
    • SNAREs—engines for membrane fusion
    • 47 Jahn, R., Scheller, R.H., SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7 (2006), 631–643.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 631-643
    • Jahn, R.1    Scheller, R.H.2
  • 48
  • 49
    • 80052628194 scopus 로고    scopus 로고
    • GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering
    • 49 Brown, F.C., Schindelhaim, C.H., Pfeffer, S.R., GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering. J Cell Biol 194 (2011), 779–787.
    • (2011) J Cell Biol , vol.194 , pp. 779-787
    • Brown, F.C.1    Schindelhaim, C.H.2    Pfeffer, S.R.3
  • 50
    • 85013863460 scopus 로고    scopus 로고
    • Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action
    • 50 Cheung, P.Y., Pfeffer, S.R., Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action. Front Cell Dev Biol, 4, 2016, 18.
    • (2016) Front Cell Dev Biol , vol.4 , pp. 18
    • Cheung, P.Y.1    Pfeffer, S.R.2
  • 51
    • 0035999979 scopus 로고    scopus 로고
    • Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p
    • 51 Ram, R.J., Li, B., Kaiser, C.A., Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13 (2002), 1484–1500.
    • (2002) Mol Biol Cell , vol.13 , pp. 1484-1500
    • Ram, R.J.1    Li, B.2    Kaiser, C.A.3
  • 52
    • 0037071543 scopus 로고    scopus 로고
    • The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins
    • 52 Suvorova, E.S., Duden, R., Lupashin, V.V., The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157 (2002), 631–643.
    • (2002) J Cell Biol , vol.157 , pp. 631-643
    • Suvorova, E.S.1    Duden, R.2    Lupashin, V.V.3
  • 53
    • 14744272136 scopus 로고    scopus 로고
    • Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells
    • 53 Zolov, S.N., Lupashin, V.V., Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168 (2005), 747–759.
    • (2005) J Cell Biol , vol.168 , pp. 747-759
    • Zolov, S.N.1    Lupashin, V.V.2
  • 54
    • 84873630243 scopus 로고    scopus 로고
    • Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF)
    • 54 Miller, V.J., Sharma, P., Kudlyk, T.A., Frost, L., Rofe, A.P., Watson, I.J., Duden, R., Lowe, M., Lupashin, V.V., Ungar, D., Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 288 (2013), 4229–4240.
    • (2013) J Biol Chem , vol.288 , pp. 4229-4240
    • Miller, V.J.1    Sharma, P.2    Kudlyk, T.A.3    Frost, L.4    Rofe, A.P.5    Watson, I.J.6    Duden, R.7    Lowe, M.8    Lupashin, V.V.9    Ungar, D.10
  • 56
    • 84875327132 scopus 로고    scopus 로고
    • The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus
    • 56 Koreishi, M., Gniadek, T.J., Yu, S., Masuda, J., Honjo, Y., Satoh, A., The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus. PLoS One, 8, 2013, e59821.
    • (2013) PLoS One , vol.8 , pp. e59821
    • Koreishi, M.1    Gniadek, T.J.2    Yu, S.3    Masuda, J.4    Honjo, Y.5    Satoh, A.6
  • 57
    • 84984869262 scopus 로고    scopus 로고
    • ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking
    • 57 Schroter, S., Beckmann, S., Schmitt, H.D., ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking. EMBO J 35 (2016), 1935–1955.
    • (2016) EMBO J , vol.35 , pp. 1935-1955
    • Schroter, S.1    Beckmann, S.2    Schmitt, H.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.