메뉴 건너뛰기




Volumn 5, Issue 4, 2011, Pages 347-356

Network intrusion detection system: A machine learning approach

Author keywords

Cost matrix; Intrusion detection; Machine learning

Indexed keywords


EID: 85013596941     PISSN: 18724981     EISSN: 18758843     Source Type: Journal    
DOI: 10.3233/IDT-2011-0117     Document Type: Article
Times cited : (37)

References (43)
  • 3
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD’99 classifier learning
    • C. Elkan, Results of the KDD’99 classifier learning, SIGKDD Explorations 1(2) (2000), 63-64.
    • (2000) SIGKDD Explorations , vol.1 , Issue.2 , pp. 63-64
    • Elkan, C.1
  • 4
    • 35248819234 scopus 로고    scopus 로고
    • Using decision tree to improve signature based intrusion detection
    • (Vol. 2820), G. Vigna, E. Jonsson and C. Kruegel, eds, Lecture Notes in Computer Science
    • C. Krugel and T. Toth, Using decision tree to improve signature based intrusion detection, in: Proceedings of RAID, (Vol. 2820), G. Vigna, E. Jonsson and C. Kruegel, eds, Lecture Notes in Computer Science, 2003, pp. 173-191.
    • (2003) Proceedings of RAID , pp. 173-191
    • Krugel, C.1    Toth, T.2
  • 6
    • 84920389231 scopus 로고
    • An intrusion detection model
    • IEEE Computer Society Press, USA
    • D.E. Denning, An intrusion detection model, IEEE Trans. On Software Engineering SE-13(2) (1987), 118-131. IEEE Computer Society Press, USA.
    • (1987) IEEE Trans. On Software Engineering , vol.SE-13 , Issue.2 , pp. 118-131
    • Denning, D.E.1
  • 8
    • 84941079784 scopus 로고    scopus 로고
    • A new approach to intrusion detection using artificial neural networks and fuzzy clustering
    • Elsevier
    • G. Wang, J. Hao, J. Ma and L. Huang, A new approach to intrusion detection using artificial neural networks and fuzzy clustering, Expert system with applications 37 (2010), 6225-6232, Elsevier.
    • (2010) Expert system with applications , vol.37 , pp. 6225-6232
    • Wang, G.1    Hao, J.2    Ma, J.3    Huang, L.4
  • 10
    • 57049093231 scopus 로고    scopus 로고
    • Application of data mining to network intrusion detection: Classifier selection model
    • (Vol. 5297), Y. Ma, D. Choi and S. Ata, eds, Lecture notes in computer science, Springer
    • H.A. Nguyen and D. Choi, Application of data mining to network intrusion detection: classifier selection model, in: Proceedings of Challenges for Next Generation Network Operations and Service Management (APNMOS 2008), (Vol. 5297), Y. Ma, D. Choi and S. Ata, eds, Lecture notes in computer science, Springer, 2008, pp. 399-408.
    • (2008) Proceedings of Challenges for Next Generation Network Operations and Service Management (APNMOS 2008) , pp. 399-408
    • Nguyen, H.A.1    Choi, D.2
  • 14
    • 85019691440 scopus 로고    scopus 로고
    • Testing Intrusion detection system: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • J. McHugh, Testing Intrusion detection system: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory, ACM Transaction on Information and system security 3(4) (2000), 262-294.
    • (2000) ACM Transaction on Information and system security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 15
  • 16
    • 0004048154 scopus 로고
    • Technical report, Contract 79F296400, J.P. Anderson company, Fort Washington, Pennsylvania
    • J.P. Anderson, Computer Security Threat Monitoring and Surveillance, Technical report, Contract 79F296400, J.P. Anderson company, Fort Washington, Pennsylvania, 1985.
    • (1985) Computer Security Threat Monitoring and Surveillance
    • Anderson, J.P.1
  • 18
    • 35248845955 scopus 로고    scopus 로고
    • Finite mixture model of bounded semi-näıve Bayesian networks classifier
    • Istanbul, Turkey, Jun 2003, Okyay Kaynak, Ethem Alpaydin, Erkki Oja, Lei Xu eds, Lecture notes in computer science, 2714
    • K. Huang, I. King and M.R. Lyu, Finite mixture model of bounded semi-näıve Bayesian networks classifier, in: Proceedings of 10th Intl. Conference on Neural Information Processing (ICONIP-2003), Istanbul, Turkey, Jun 2003, Okyay Kaynak, Ethem Alpaydin, Erkki Oja, Lei Xu eds, Lecture notes in computer science, 2714, pp. 115-122.
    • Proceedings of 10th Intl. Conference on Neural Information Processing (ICONIP-2003) , pp. 115-122
    • Huang, K.1    King, I.2    Lyu, M.R.3
  • 20
    • 72449131513 scopus 로고    scopus 로고
    • From feature selection to building ofBayesian classifiers: Anetwork intrusion detection perspective
    • K.-C. Khor, C.-Y. Ting and S.-P.Amnuaisuk, From feature selection to building ofBayesian classifiers: Anetwork intrusion detection perspective, American Journal of applied sciences 6(11) (2009), 1949-1960.
    • (2009) American Journal of applied sciences , vol.6 , Issue.11 , pp. 1949-1960
    • Khor, K.-C.1    Ting, C.-Y.2    Amnuaisuk, S.-P.3
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L. Breiman, Random Forests, Machine Learning 45 (2001), 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 22
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One sided selection
    • D.H. Fisher, ed., Nashville, Tennessee, USA, July, Morgan Kauffman Publisher
    • M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one sided selection, in: Proceedings of the 14th International conference on Machine Learning, D.H. Fisher, ed., Nashville, Tennessee, USA, July 1997, pp. 179-186. Morgan Kauffman Publisher.
    • (1997) Proceedings of the 14th International conference on Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 24
    • 71649088415 scopus 로고    scopus 로고
    • A Hybrid Clustering approach for network intrusion detection usingCOBWEB and FFT
    • M. Panda and M.R. Patra, A Hybrid Clustering approach for network intrusion detection usingCOBWEB and FFT, Journal of Intelligent System 18(3) (2009), 229-245.
    • (2009) Journal of Intelligent System , vol.18 , Issue.3 , pp. 229-245
    • Panda, M.1    Patra, M.R.2
  • 26
    • 35248857893 scopus 로고    scopus 로고
    • An analysis of the 1999 DARPA/Lincoln Lab. Evaluation data for network anomaly detection
    • Pittsburgh, USA, lecture notes in computer science, Sept, Springer
    • M. Mahoney and P. Chan, An analysis of the 1999 DARPA/Lincoln Lab. Evaluation data for network anomaly detection, in: Proceedings of 6th International Symposium Recent Advances in Intrusion Detection (RAID-03), (Vol. 2820), Pittsburgh, USA, lecture notes in computer science, Sept 2003, pp. 220-238. Springer.
    • (2003) Proceedings of 6th International Symposium Recent Advances in Intrusion Detection (RAID-03) , vol.2820 , pp. 220-238
    • Mahoney, M.1    Chan, P.2
  • 29
  • 30
    • 84921944039 scopus 로고    scopus 로고
    • accessed on 8-10-2010
    • NSL KDD dataset, http://iscx.ca/NSL-KDD/, accessed on 8-10-2010.
    • NSL KDD dataset
  • 32
    • 0036508551 scopus 로고    scopus 로고
    • CSI/FBI computer crime and security survey
    • R. Power, CSI/FBI computer crime and security survey, Computer Security Journal 18(2) (2002), 7-30.
    • (2002) Computer Security Journal , vol.18 , Issue.2 , pp. 7-30
    • Power, R.1
  • 33
    • 0013029835 scopus 로고    scopus 로고
    • PNrule: A new framework for learning classifier models in data mining
    • Department of Computer Science, University of Minnesota, Report No-RC 21719
    • R. Agarwal and M.V. Joshi, PNrule: A new framework for learning classifier models in data mining. Technical Report, Department of Computer Science, University of Minnesota, Report No-RC 21719, 2000.
    • (2000) Technical Report
    • Agarwal, R.1    Joshi, M.V.2
  • 42
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features andmodels for intrusion detection systems
    • W. Lee and J. Stolfo, A framework for constructing features andmodels for intrusion detection systems, ACMTransactions on Information and System Security (TISSEC) 3(4) (2000), 227-261.
    • (2000) ACMTransactions on Information and System Security (TISSEC) , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, J.2
  • 43
    • 0031211090 scopus 로고    scopus 로고
    • A decision theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R.E. Schapire, A decision theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55(1) (1997), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.