-
1
-
-
0035489027
-
Born again bone: tissue engineering for bone repair
-
[1] Braddock, M., Houston, P., Campbell, C., Ashcroft, P., Born again bone: tissue engineering for bone repair. Am. Physiol. Soc. 16 (2001), 208–213.
-
(2001)
Am. Physiol. Soc.
, vol.16
, pp. 208-213
-
-
Braddock, M.1
Houston, P.2
Campbell, C.3
Ashcroft, P.4
-
2
-
-
48449102477
-
Beads of collagen–nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells
-
[2] Tsai, S.T., Hsu, F.Y., Chen, P.L., Beads of collagen–nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomater. 4 (2008), 1332–1341.
-
(2008)
Acta Biomater.
, vol.4
, pp. 1332-1341
-
-
Tsai, S.T.1
Hsu, F.Y.2
Chen, P.L.3
-
3
-
-
0037409773
-
Transplantation of cultured bone cells using combinations of scaffolds and culture techniques
-
[3] Uemura, T., Dong, J., Wang, Y., Kojima, H., Saito, T., Iejima, D., Kikuchi, M., Tanaka, J., Tateishi, T., Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. Biomaterials 24 (2003), 2277–2286.
-
(2003)
Biomaterials
, vol.24
, pp. 2277-2286
-
-
Uemura, T.1
Dong, J.2
Wang, Y.3
Kojima, H.4
Saito, T.5
Iejima, D.6
Kikuchi, M.7
Tanaka, J.8
Tateishi, T.9
-
4
-
-
4444283223
-
Biological and biophysical principles in extracorporal bone tissue engineering: part III
-
[4] Meyer, U., Joos, U., Wiesmann, H.P., Biological and biophysical principles in extracorporal bone tissue engineering: part III. Int. J. Oral Maxillofac. Surg. 33 (2004), 635–641.
-
(2004)
Int. J. Oral Maxillofac. Surg.
, vol.33
, pp. 635-641
-
-
Meyer, U.1
Joos, U.2
Wiesmann, H.P.3
-
5
-
-
0034744711
-
Cellular materials as porous scaffolds for tissue engineering
-
[5] Freyman, T., Yannas, I., Gibson, L., Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci. 46 (2001), 273–282.
-
(2001)
Prog. Mater. Sci.
, vol.46
, pp. 273-282
-
-
Freyman, T.1
Yannas, I.2
Gibson, L.3
-
6
-
-
84961310372
-
Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material
-
[6] Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N., Tang, I.M., Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Mater. Sci. Eng. C 62 (2016), 183–189.
-
(2016)
Mater. Sci. Eng. C
, vol.62
, pp. 183-189
-
-
Pon-On, W.1
Suntornsaratoon, P.2
Charoenphandhu, N.3
Thongbunchoo, J.4
Krishnamra, N.5
Tang, I.M.6
-
7
-
-
84969579598
-
Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency
-
[7] Zhou, X.H., Wei, D.X., Ye, H.M., Zhang, X., Meng, X., Zhou, Q., Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency. Mater. Sci. Eng. C 67 (2016), 326–335.
-
(2016)
Mater. Sci. Eng. C
, vol.67
, pp. 326-335
-
-
Zhou, X.H.1
Wei, D.X.2
Ye, H.M.3
Zhang, X.4
Meng, X.5
Zhou, Q.6
-
8
-
-
84975078556
-
Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method
-
[8] Fereshteh, Z., Fathi, M., Bagri, A., Boccaccini, A.R., Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Mater. Sci. Eng. C 68 (2016), 613–622.
-
(2016)
Mater. Sci. Eng. C
, vol.68
, pp. 613-622
-
-
Fereshteh, Z.1
Fathi, M.2
Bagri, A.3
Boccaccini, A.R.4
-
9
-
-
84949516350
-
Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering
-
[9] Zhao, W., Li, J., Jin, K., Liu, W., Qiu, X., Li, C., Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater. Sci. Eng. C 59 (2016), 1181–1194.
-
(2016)
Mater. Sci. Eng. C
, vol.59
, pp. 1181-1194
-
-
Zhao, W.1
Li, J.2
Jin, K.3
Liu, W.4
Qiu, X.5
Li, C.6
-
10
-
-
84886066332
-
Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering
-
[10] Saravanan, S., Sameera, D.K., Moorthi, A., Selvamurugan, N., Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 62 (2013), 431–486.
-
(2013)
Int. J. Biol. Macromol.
, vol.62
, pp. 431-486
-
-
Saravanan, S.1
Sameera, D.K.2
Moorthi, A.3
Selvamurugan, N.4
-
11
-
-
84943812782
-
Regenerated cellulose scaffolds: preparation, characterization and toxicological evaluation
-
[11] de Araújo Júnior, A.M., Braido, G., Saska, S., Barud, H.S., Franchi, L.P., Assunção, R.M.N., Scarel-Caminaga, R.M., Capote, T.S.O., Messaddeq, Y., Ribeiro, S.J.L., Regenerated cellulose scaffolds: preparation, characterization and toxicological evaluation. Carbohydr. Polym. 136 (2016), 892–898.
-
(2016)
Carbohydr. Polym.
, vol.136
, pp. 892-898
-
-
de Araújo Júnior, A.M.1
Braido, G.2
Saska, S.3
Barud, H.S.4
Franchi, L.P.5
Assunção, R.M.N.6
Scarel-Caminaga, R.M.7
Capote, T.S.O.8
Messaddeq, Y.9
Ribeiro, S.J.L.10
-
12
-
-
84952936990
-
Gelatine modified monetite as a bone substitute material: an in vitro assessment of bone biocompatibility
-
[12] Kruppke, B., Farack, J., Wagner, A.S., Beckmann, S., Heinemann, C., Glenske, K., Rößler, S., Wiesmann, H.P., Wenisch, S., Hanke, T., Gelatine modified monetite as a bone substitute material: an in vitro assessment of bone biocompatibility. Acta Biomater. 32 (2016), 275–285.
-
(2016)
Acta Biomater.
, vol.32
, pp. 275-285
-
-
Kruppke, B.1
Farack, J.2
Wagner, A.S.3
Beckmann, S.4
Heinemann, C.5
Glenske, K.6
Rößler, S.7
Wiesmann, H.P.8
Wenisch, S.9
Hanke, T.10
-
13
-
-
0027595948
-
Tissue engineering
-
[13] Langer, R., Vacanti, J.P., Tissue engineering. Science 260 (1993), 920–926.
-
(1993)
Science
, vol.260
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
14
-
-
0035255365
-
Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds
-
[14] Ma, P.X., Zhang, R., Xiao, G., Franceschi, R., Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res. 54 (2001), 284–293.
-
(2001)
J. Biomed. Mater. Res.
, vol.54
, pp. 284-293
-
-
Ma, P.X.1
Zhang, R.2
Xiao, G.3
Franceschi, R.4
-
15
-
-
77649273978
-
Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering
-
[15] Peter, M., Binulal, N.S., Nair, S.V., Selvamurugan, N., Tamura, H., Jayakumar, R., Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 158 (2010), 353–361.
-
(2010)
Chem. Eng. J.
, vol.158
, pp. 353-361
-
-
Peter, M.1
Binulal, N.S.2
Nair, S.V.3
Selvamurugan, N.4
Tamura, H.5
Jayakumar, R.6
-
16
-
-
84887622501
-
Calcium phosphate coatings: morphology, micro-structure and mechanical properties
-
[16] Saber-Samandari, S., Alamara, K., Saber-Samandari, S., Calcium phosphate coatings: morphology, micro-structure and mechanical properties. Ceram. Int. 40 (2014), 563–572.
-
(2014)
Ceram. Int.
, vol.40
, pp. 563-572
-
-
Saber-Samandari, S.1
Alamara, K.2
Saber-Samandari, S.3
-
17
-
-
0036166394
-
Properties of osteoconductive biomaterials: calcium phosphates
-
[17] LeGeros, R.Z., Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 395 (2002), 81–98.
-
(2002)
Clin. Orthop. Relat. Res.
, vol.395
, pp. 81-98
-
-
LeGeros, R.Z.1
-
18
-
-
85013170721
-
The effective role of hydroxyapatite based composites in anticancer drug delivery systems
-
[18] Saber-Samandari, S., Nezafati, N., Saber-Samandari, S., The effective role of hydroxyapatite based composites in anticancer drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 33 (2016), 41–75.
-
(2016)
Crit. Rev. Ther. Drug Carrier Syst.
, vol.33
, pp. 41-75
-
-
Saber-Samandari, S.1
Nezafati, N.2
Saber-Samandari, S.3
-
19
-
-
84924429601
-
Preparation and cell infiltration of lotustype porous nano-hydroxyapatite/polyurethane scaffold for bone tissue regeneration
-
[19] Li, L., Zhao, M., Li, J., Zuo, Y., Zuo, Q., Li, Y., Preparation and cell infiltration of lotustype porous nano-hydroxyapatite/polyurethane scaffold for bone tissue regeneration. Mater. Lett. 149 (2015), 25–28.
-
(2015)
Mater. Lett.
, vol.149
, pp. 25-28
-
-
Li, L.1
Zhao, M.2
Li, J.3
Zuo, Y.4
Zuo, Q.5
Li, Y.6
-
20
-
-
0028891795
-
Reactivity and the fate of some composite bioimplants based on collagen in connective tissue
-
[20] Pohunkova, H., Adam, M., Reactivity and the fate of some composite bioimplants based on collagen in connective tissue. Biomaterials 16 (1995), 67–71.
-
(1995)
Biomaterials
, vol.16
, pp. 67-71
-
-
Pohunkova, H.1
Adam, M.2
-
21
-
-
0026604286
-
Ceramics in orthopedic surgery
-
[21] Cooke, F.W., Ceramics in orthopedic surgery. Clin. Orthop. Relat. Res. 276 (1992), 135–146.
-
(1992)
Clin. Orthop. Relat. Res.
, vol.276
, pp. 135-146
-
-
Cooke, F.W.1
-
22
-
-
84954310995
-
Highly dispersed nanoscale hydroxyapatite on cellulose nanofibers for bone regeneration
-
[22] Yamaguchi, K., Prabakaran, M., Ke, M., Gang, X., Chung, M., Chul Um, I., Gopiraman, M., Soo, Kim I., Highly dispersed nanoscale hydroxyapatite on cellulose nanofibers for bone regeneration. Mater. Lett. 168 (2016), 56–61.
-
(2016)
Mater. Lett.
, vol.168
, pp. 56-61
-
-
Yamaguchi, K.1
Prabakaran, M.2
Ke, M.3
Gang, X.4
Chung, M.5
Chul Um, I.6
Gopiraman, M.7
Soo, K.I.8
-
23
-
-
84884842177
-
Synthesis, characterization and application of cellulose based nano-biocomposite hydrogels
-
[23] Saber-Samandari, S., Saber-Samandari, S., Gazi, M., Cebeci, F.C., Talasaz, E., Synthesis, characterization and application of cellulose based nano-biocomposite hydrogels. J. Macromol. Sci. Pure Appl. Chem. 50 (2013), 1131–1141.
-
(2013)
J. Macromol. Sci. Pure Appl. Chem.
, vol.50
, pp. 1131-1141
-
-
Saber-Samandari, S.1
Saber-Samandari, S.2
Gazi, M.3
Cebeci, F.C.4
Talasaz, E.5
-
24
-
-
61349172626
-
A novel method for producing tissue engineering scaffolds from chitin, chitin–hydroxyapatite, and cellulose
-
[24] Tsioptsias, C., Tsivintzelis, I., Papadopoulou, L., Panayiotou, C., A novel method for producing tissue engineering scaffolds from chitin, chitin–hydroxyapatite, and cellulose. Mater. Sci. Eng. C 29 (2009), 159–164.
-
(2009)
Mater. Sci. Eng. C
, vol.29
, pp. 159-164
-
-
Tsioptsias, C.1
Tsivintzelis, I.2
Papadopoulou, L.3
Panayiotou, C.4
-
25
-
-
84884842177
-
Synthesis, characterization and application of cellulose based nano-biocomposite hydrogels
-
[25] Saber-Samandari, S., Saber-Samandari, S., Gazi, M., Cebeci, F.C., Talasaz, E., Synthesis, characterization and application of cellulose based nano-biocomposite hydrogels. J. Macromol. Sci. Pure Appl. Chem. 50 (2013), 1133–1141.
-
(2013)
J. Macromol. Sci. Pure Appl. Chem.
, vol.50
, pp. 1133-1141
-
-
Saber-Samandari, S.1
Saber-Samandari, S.2
Gazi, M.3
Cebeci, F.C.4
Talasaz, E.5
-
26
-
-
79951678611
-
A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofiber
-
[26] Zhou, C., Wu, Q., A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofiber. Colloids Surf. B. 84 (2011), 155–162.
-
(2011)
Colloids Surf. B.
, vol.84
, pp. 155-162
-
-
Zhou, C.1
Wu, Q.2
-
27
-
-
84915764480
-
Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties
-
[27] Li, Z., Mi, W., Wang, H., Su, Y., He, C., Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloids Surf. B., 959-964, 2014.
-
(2014)
Colloids Surf. B.
, vol.959-964
-
-
Li, Z.1
Mi, W.2
Wang, H.3
Su, Y.4
He, C.5
-
28
-
-
60349104963
-
Hydrogels for soft machines
-
[28] Calvert, P., Hydrogels for soft machines. Adv. Mater. 21 (2009), 743–756.
-
(2009)
Adv. Mater.
, vol.21
, pp. 743-756
-
-
Calvert, P.1
-
29
-
-
0042061223
-
Hydrogels for tissue engineering: scaffold design variables and applications
-
[29] Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24 (2003), 4337–4351.
-
(2003)
Biomaterials
, vol.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
30
-
-
2442459588
-
Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel
-
[30] Lin, D.C., Yurke, B., Langrana, N.A., Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126 (2004), 104–110.
-
(2004)
J. Biomech. Eng.
, vol.126
, pp. 104-110
-
-
Lin, D.C.1
Yurke, B.2
Langrana, N.A.3
-
31
-
-
35048873654
-
Applications of hydrogels for neural cell engineering
-
[31] Hynd, M.R., Turner, J.N., Shain, W., Applications of hydrogels for neural cell engineering. J. Biomater. Sci. Polym. Ed. 18 (2007), 1223–1244.
-
(2007)
J. Biomater. Sci. Polym. Ed.
, vol.18
, pp. 1223-1244
-
-
Hynd, M.R.1
Turner, J.N.2
Shain, W.3
-
32
-
-
84981722626
-
Composite hydrogels based on polyacrylamide and cellulose: synthesis and functional properties
-
[32] Buyanov, E.L., Gofman, I.V., Bozhkova, S.A., Saprykina, N.N., Kochish, Y.A., Netyl'ko, G.I., Khripunov, A.K., Smyslov, R.Y., Afanas'ev, A.V., Panarin, E.F., Composite hydrogels based on polyacrylamide and cellulose: synthesis and functional properties. Russ. J. Appl. Chem. 89 (2016), 772–779.
-
(2016)
Russ. J. Appl. Chem.
, vol.89
, pp. 772-779
-
-
Buyanov, E.L.1
Gofman, I.V.2
Bozhkova, S.A.3
Saprykina, N.N.4
Kochish, Y.A.5
Netyl'ko, G.I.6
Khripunov, A.K.7
Smyslov, R.Y.8
Afanas'ev, A.V.9
Panarin, E.F.10
-
33
-
-
34249662113
-
A model of the fracture of double network gels
-
[33] Brown, H.R., A model of the fracture of double network gels. Macromolecules 40 (2007), 3815–3818.
-
(2007)
Macromolecules
, vol.40
, pp. 3815-3818
-
-
Brown, H.R.1
-
34
-
-
0026904166
-
Characterization of inhomogeneous polyacrylamide hydrogels
-
[34] Cohen, Y., Ramon, O., Kopelman, I.J., Mizrahi, S., Characterization of inhomogeneous polyacrylamide hydrogels. J. Polym. Sci. B Polym. Phys. 30 (1992), 1055–1067.
-
(1992)
J. Polym. Sci. B Polym. Phys.
, vol.30
, pp. 1055-1067
-
-
Cohen, Y.1
Ramon, O.2
Kopelman, I.J.3
Mizrahi, S.4
-
35
-
-
84956898476
-
In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering
-
[35] Saber-Samandari, S., Saber-Samandari, S., Kiyazar, S., Aghazadeh, J., Sadeghi, A., In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 86 (2016), 434–442.
-
(2016)
Int. J. Biol. Macromol.
, vol.86
, pp. 434-442
-
-
Saber-Samandari, S.1
Saber-Samandari, S.2
Kiyazar, S.3
Aghazadeh, J.4
Sadeghi, A.5
-
36
-
-
84893427377
-
Chitosan-pectin-alginate as a novel scaffold for tissue engineering applications
-
[36] Archana, D., Upadhyay, L., Tewari, R.P., Dutta, J., Huang, Y.B., Dutta, P.K., Chitosan-pectin-alginate as a novel scaffold for tissue engineering applications. Indian J. Biotechnol. 12 (2013), 475–482.
-
(2013)
Indian J. Biotechnol.
, vol.12
, pp. 475-482
-
-
Archana, D.1
Upadhyay, L.2
Tewari, R.P.3
Dutta, J.4
Huang, Y.B.5
Dutta, P.K.6
-
37
-
-
84882411939
-
Synthesis and characterization of chitosan-graft-poly(n-allyl maleamic acid) hydrogel membrane
-
[37] Saber-Samandari, S., Gazi, M., Yilmaz, O., Synthesis and characterization of chitosan-graft-poly(n-allyl maleamic acid) hydrogel membrane. Water Air Soil Pollut., 224, 2013, 1624.
-
(2013)
Water Air Soil Pollut.
, vol.224
, pp. 1624
-
-
Saber-Samandari, S.1
Gazi, M.2
Yilmaz, O.3
-
38
-
-
84926004397
-
Mesoporous carbon as a carrier for celecoxib: the improved inhibition effect on MDA-MB-231 cells migration and invasion
-
[38] Zhu, W., Zhao, W., Zheng, X., Zhang, Z., Jiang, T., Li, Y., Wang, S., Mesoporous carbon as a carrier for celecoxib: the improved inhibition effect on MDA-MB-231 cells migration and invasion. Asian J. Pharm. Sci. 9 (2014), 82–91.
-
(2014)
Asian J. Pharm. Sci.
, vol.9
, pp. 82-91
-
-
Zhu, W.1
Zhao, W.2
Zheng, X.3
Zhang, Z.4
Jiang, T.5
Li, Y.6
Wang, S.7
-
39
-
-
84964403881
-
Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: the impact of hydroxyapatite
-
[39] Saber-Samandari, S., Saber-Samandari, S., Ghonjizade-Samani, F., Aghazadeh, J., Sadeghi, A., Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: the impact of hydroxyapatite. Ceram. Int. 42 (2016), 11055–11062.
-
(2016)
Ceram. Int.
, vol.42
, pp. 11055-11062
-
-
Saber-Samandari, S.1
Saber-Samandari, S.2
Ghonjizade-Samani, F.3
Aghazadeh, J.4
Sadeghi, A.5
-
40
-
-
84875753928
-
The vibrational features of hydroxylapatite and type A carbonated apatite: a first principle contribution
-
[40] Ulian, G., Valdre, G., Corno, M., Ugliengo, P., The vibrational features of hydroxylapatite and type A carbonated apatite: a first principle contribution. Am. Mineral. 98 (2013), 752–759.
-
(2013)
Am. Mineral.
, vol.98
, pp. 752-759
-
-
Ulian, G.1
Valdre, G.2
Corno, M.3
Ugliengo, P.4
-
41
-
-
84887154943
-
Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite
-
[41] Saber-Samandari, S., Alamara, K., Saber-Samandari, S., Gross, K.A., Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite. Acta Biomater. 9 (2013), 9538–9546.
-
(2013)
Acta Biomater.
, vol.9
, pp. 9538-9546
-
-
Saber-Samandari, S.1
Alamara, K.2
Saber-Samandari, S.3
Gross, K.A.4
-
42
-
-
67649381475
-
Nanoindentation on the surface of thermally sprayed coatings
-
[42] Gross, K.A., Saber-Samandari, S., Nanoindentation on the surface of thermally sprayed coatings. Surf. Coat. Technol. 203 (2009), 3516–3520.
-
(2009)
Surf. Coat. Technol.
, vol.203
, pp. 3516-3520
-
-
Gross, K.A.1
Saber-Samandari, S.2
-
43
-
-
0035880547
-
Porosity determinations in thermally sprayed hydroxyapatite coatings
-
[43] Mancini, C.E., Berndt, C.C., Sun, L., Kucuk, A., Porosity determinations in thermally sprayed hydroxyapatite coatings. J. Mater. Sci. 36 (2001), 3891–3896.
-
(2001)
J. Mater. Sci.
, vol.36
, pp. 3891-3896
-
-
Mancini, C.E.1
Berndt, C.C.2
Sun, L.3
Kucuk, A.4
-
44
-
-
0014852980
-
Potential of ceramic materials as permanently implantable skeletal prostheses
-
[44] Hulbert, S.F., Young, F.A., Mathews, R.S., Klawitter, J.J., Talbert, C.D., Stelling, F.H., Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater. Res. 4 (1970), 433–456.
-
(1970)
J. Biomed. Mater. Res.
, vol.4
, pp. 433-456
-
-
Hulbert, S.F.1
Young, F.A.2
Mathews, R.S.3
Klawitter, J.J.4
Talbert, C.D.5
Stelling, F.H.6
-
45
-
-
84864982149
-
Potential bone replacement materials prepared by two methods
-
[45] Lee, S., Porter, M., Wasko, S., Lau, G., Chen, P.Y., Novitskaya, E.E., To msia, A.P., Almutairi, A., Meyers, M.A., McKittrick, J., Potential bone replacement materials prepared by two methods. Mater. Res. Soc. Symp. Proc. 1418 (2012), 177–181.
-
(2012)
Mater. Res. Soc. Symp. Proc.
, vol.1418
, pp. 177-181
-
-
Lee, S.1
Porter, M.2
Wasko, S.3
Lau, G.4
Chen, P.Y.5
Novitskaya, E.E.6
To msia, A.P.7
Almutairi, A.8
Meyers, M.A.9
McKittrick, J.10
-
46
-
-
79960563496
-
Compressive mechanical properties of demineralized and deproteinized cancellous bone
-
[46] Chen, P.Y., McKittrick, J., Compressive mechanical properties of demineralized and deproteinized cancellous bone. J. Mech. Behav. Biomed. Mater. 4 (2011), 961–973.
-
(2011)
J. Mech. Behav. Biomed. Mater.
, vol.4
, pp. 961-973
-
-
Chen, P.Y.1
McKittrick, J.2
-
47
-
-
84929285426
-
Mechanical properties of porous ceramic scaffolds: influence of internal dimensions
-
[47] Sabree, I., Gough, J.E., Derby, B., Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram. Int. 41 (2015), 8425–8432.
-
(2015)
Ceram. Int.
, vol.41
, pp. 8425-8432
-
-
Sabree, I.1
Gough, J.E.2
Derby, B.3
-
48
-
-
79960563496
-
Compressive mechanical properties of demineralized and deproteinized cancellous bone
-
[48] Chen, P.Y., McKittrick, J., Compressive mechanical properties of demineralized and deproteinized cancellous bone. J. Mech. Behav. Biomed. Mater. 4 (2011), 961–973.
-
(2011)
J. Mech. Behav. Biomed. Mater.
, vol.4
, pp. 961-973
-
-
Chen, P.Y.1
McKittrick, J.2
-
49
-
-
84913557747
-
Efficient removal of anionic and cationic dyes from an aqueous solution using pullulan-graft-polyacrylamide porous hydrogel
-
[49] Saber-Samandari, S., Gulcan, H.O., Saber-Samandari, S., Gazi, M., Efficient removal of anionic and cationic dyes from an aqueous solution using pullulan-graft-polyacrylamide porous hydrogel. Water Air Soil Pollut., 225, 2014, 2177.
-
(2014)
Water Air Soil Pollut.
, vol.225
, pp. 2177
-
-
Saber-Samandari, S.1
Gulcan, H.O.2
Saber-Samandari, S.3
Gazi, M.4
|