메뉴 건너뛰기




Volumn 75, Issue , 2017, Pages 385-392

Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair

Author keywords

Bone tissue engineering; Cellulose; Graft polymerization; Hydroxyapatite; Nanocomposite

Indexed keywords

BONE; CELL CULTURE; CELLULOSE; ENERGY DISPERSIVE SPECTROSCOPY; FOURIER TRANSFORM INFRARED SPECTROSCOPY; HYDROXYAPATITE; NANOCOMPOSITES; PORE SIZE; SALINE WATER; SCANNING ELECTRON MICROSCOPY; TISSUE; TISSUE ENGINEERING; X RAY DIFFRACTION ANALYSIS; X RAY SPECTROSCOPY;

EID: 85013335506     PISSN: 09284931     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.msec.2017.02.040     Document Type: Article
Times cited : (58)

References (49)
  • 2
    • 48449102477 scopus 로고    scopus 로고
    • Beads of collagen–nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells
    • [2] Tsai, S.T., Hsu, F.Y., Chen, P.L., Beads of collagen–nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Acta Biomater. 4 (2008), 1332–1341.
    • (2008) Acta Biomater. , vol.4 , pp. 1332-1341
    • Tsai, S.T.1    Hsu, F.Y.2    Chen, P.L.3
  • 4
    • 4444283223 scopus 로고    scopus 로고
    • Biological and biophysical principles in extracorporal bone tissue engineering: part III
    • [4] Meyer, U., Joos, U., Wiesmann, H.P., Biological and biophysical principles in extracorporal bone tissue engineering: part III. Int. J. Oral Maxillofac. Surg. 33 (2004), 635–641.
    • (2004) Int. J. Oral Maxillofac. Surg. , vol.33 , pp. 635-641
    • Meyer, U.1    Joos, U.2    Wiesmann, H.P.3
  • 5
    • 0034744711 scopus 로고    scopus 로고
    • Cellular materials as porous scaffolds for tissue engineering
    • [5] Freyman, T., Yannas, I., Gibson, L., Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci. 46 (2001), 273–282.
    • (2001) Prog. Mater. Sci. , vol.46 , pp. 273-282
    • Freyman, T.1    Yannas, I.2    Gibson, L.3
  • 7
    • 84969579598 scopus 로고    scopus 로고
    • Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency
    • [7] Zhou, X.H., Wei, D.X., Ye, H.M., Zhang, X., Meng, X., Zhou, Q., Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency. Mater. Sci. Eng. C 67 (2016), 326–335.
    • (2016) Mater. Sci. Eng. C , vol.67 , pp. 326-335
    • Zhou, X.H.1    Wei, D.X.2    Ye, H.M.3    Zhang, X.4    Meng, X.5    Zhou, Q.6
  • 8
    • 84975078556 scopus 로고    scopus 로고
    • Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method
    • [8] Fereshteh, Z., Fathi, M., Bagri, A., Boccaccini, A.R., Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Mater. Sci. Eng. C 68 (2016), 613–622.
    • (2016) Mater. Sci. Eng. C , vol.68 , pp. 613-622
    • Fereshteh, Z.1    Fathi, M.2    Bagri, A.3    Boccaccini, A.R.4
  • 9
    • 84949516350 scopus 로고    scopus 로고
    • Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering
    • [9] Zhao, W., Li, J., Jin, K., Liu, W., Qiu, X., Li, C., Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater. Sci. Eng. C 59 (2016), 1181–1194.
    • (2016) Mater. Sci. Eng. C , vol.59 , pp. 1181-1194
    • Zhao, W.1    Li, J.2    Jin, K.3    Liu, W.4    Qiu, X.5    Li, C.6
  • 10
    • 84886066332 scopus 로고    scopus 로고
    • Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering
    • [10] Saravanan, S., Sameera, D.K., Moorthi, A., Selvamurugan, N., Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 62 (2013), 431–486.
    • (2013) Int. J. Biol. Macromol. , vol.62 , pp. 431-486
    • Saravanan, S.1    Sameera, D.K.2    Moorthi, A.3    Selvamurugan, N.4
  • 13
    • 0027595948 scopus 로고
    • Tissue engineering
    • [13] Langer, R., Vacanti, J.P., Tissue engineering. Science 260 (1993), 920–926.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 14
    • 0035255365 scopus 로고    scopus 로고
    • Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds
    • [14] Ma, P.X., Zhang, R., Xiao, G., Franceschi, R., Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res. 54 (2001), 284–293.
    • (2001) J. Biomed. Mater. Res. , vol.54 , pp. 284-293
    • Ma, P.X.1    Zhang, R.2    Xiao, G.3    Franceschi, R.4
  • 15
    • 77649273978 scopus 로고    scopus 로고
    • Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering
    • [15] Peter, M., Binulal, N.S., Nair, S.V., Selvamurugan, N., Tamura, H., Jayakumar, R., Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 158 (2010), 353–361.
    • (2010) Chem. Eng. J. , vol.158 , pp. 353-361
    • Peter, M.1    Binulal, N.S.2    Nair, S.V.3    Selvamurugan, N.4    Tamura, H.5    Jayakumar, R.6
  • 16
    • 84887622501 scopus 로고    scopus 로고
    • Calcium phosphate coatings: morphology, micro-structure and mechanical properties
    • [16] Saber-Samandari, S., Alamara, K., Saber-Samandari, S., Calcium phosphate coatings: morphology, micro-structure and mechanical properties. Ceram. Int. 40 (2014), 563–572.
    • (2014) Ceram. Int. , vol.40 , pp. 563-572
    • Saber-Samandari, S.1    Alamara, K.2    Saber-Samandari, S.3
  • 17
    • 0036166394 scopus 로고    scopus 로고
    • Properties of osteoconductive biomaterials: calcium phosphates
    • [17] LeGeros, R.Z., Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 395 (2002), 81–98.
    • (2002) Clin. Orthop. Relat. Res. , vol.395 , pp. 81-98
    • LeGeros, R.Z.1
  • 18
  • 19
    • 84924429601 scopus 로고    scopus 로고
    • Preparation and cell infiltration of lotustype porous nano-hydroxyapatite/polyurethane scaffold for bone tissue regeneration
    • [19] Li, L., Zhao, M., Li, J., Zuo, Y., Zuo, Q., Li, Y., Preparation and cell infiltration of lotustype porous nano-hydroxyapatite/polyurethane scaffold for bone tissue regeneration. Mater. Lett. 149 (2015), 25–28.
    • (2015) Mater. Lett. , vol.149 , pp. 25-28
    • Li, L.1    Zhao, M.2    Li, J.3    Zuo, Y.4    Zuo, Q.5    Li, Y.6
  • 20
    • 0028891795 scopus 로고
    • Reactivity and the fate of some composite bioimplants based on collagen in connective tissue
    • [20] Pohunkova, H., Adam, M., Reactivity and the fate of some composite bioimplants based on collagen in connective tissue. Biomaterials 16 (1995), 67–71.
    • (1995) Biomaterials , vol.16 , pp. 67-71
    • Pohunkova, H.1    Adam, M.2
  • 21
    • 0026604286 scopus 로고
    • Ceramics in orthopedic surgery
    • [21] Cooke, F.W., Ceramics in orthopedic surgery. Clin. Orthop. Relat. Res. 276 (1992), 135–146.
    • (1992) Clin. Orthop. Relat. Res. , vol.276 , pp. 135-146
    • Cooke, F.W.1
  • 24
    • 61349172626 scopus 로고    scopus 로고
    • A novel method for producing tissue engineering scaffolds from chitin, chitin–hydroxyapatite, and cellulose
    • [24] Tsioptsias, C., Tsivintzelis, I., Papadopoulou, L., Panayiotou, C., A novel method for producing tissue engineering scaffolds from chitin, chitin–hydroxyapatite, and cellulose. Mater. Sci. Eng. C 29 (2009), 159–164.
    • (2009) Mater. Sci. Eng. C , vol.29 , pp. 159-164
    • Tsioptsias, C.1    Tsivintzelis, I.2    Papadopoulou, L.3    Panayiotou, C.4
  • 26
    • 79951678611 scopus 로고    scopus 로고
    • A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofiber
    • [26] Zhou, C., Wu, Q., A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofiber. Colloids Surf. B. 84 (2011), 155–162.
    • (2011) Colloids Surf. B. , vol.84 , pp. 155-162
    • Zhou, C.1    Wu, Q.2
  • 27
    • 84915764480 scopus 로고    scopus 로고
    • Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties
    • [27] Li, Z., Mi, W., Wang, H., Su, Y., He, C., Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloids Surf. B., 959-964, 2014.
    • (2014) Colloids Surf. B. , vol.959-964
    • Li, Z.1    Mi, W.2    Wang, H.3    Su, Y.4    He, C.5
  • 28
    • 60349104963 scopus 로고    scopus 로고
    • Hydrogels for soft machines
    • [28] Calvert, P., Hydrogels for soft machines. Adv. Mater. 21 (2009), 743–756.
    • (2009) Adv. Mater. , vol.21 , pp. 743-756
    • Calvert, P.1
  • 29
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • [29] Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24 (2003), 4337–4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 30
    • 2442459588 scopus 로고    scopus 로고
    • Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel
    • [30] Lin, D.C., Yurke, B., Langrana, N.A., Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126 (2004), 104–110.
    • (2004) J. Biomech. Eng. , vol.126 , pp. 104-110
    • Lin, D.C.1    Yurke, B.2    Langrana, N.A.3
  • 31
    • 35048873654 scopus 로고    scopus 로고
    • Applications of hydrogels for neural cell engineering
    • [31] Hynd, M.R., Turner, J.N., Shain, W., Applications of hydrogels for neural cell engineering. J. Biomater. Sci. Polym. Ed. 18 (2007), 1223–1244.
    • (2007) J. Biomater. Sci. Polym. Ed. , vol.18 , pp. 1223-1244
    • Hynd, M.R.1    Turner, J.N.2    Shain, W.3
  • 33
    • 34249662113 scopus 로고    scopus 로고
    • A model of the fracture of double network gels
    • [33] Brown, H.R., A model of the fracture of double network gels. Macromolecules 40 (2007), 3815–3818.
    • (2007) Macromolecules , vol.40 , pp. 3815-3818
    • Brown, H.R.1
  • 35
    • 84956898476 scopus 로고    scopus 로고
    • In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering
    • [35] Saber-Samandari, S., Saber-Samandari, S., Kiyazar, S., Aghazadeh, J., Sadeghi, A., In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 86 (2016), 434–442.
    • (2016) Int. J. Biol. Macromol. , vol.86 , pp. 434-442
    • Saber-Samandari, S.1    Saber-Samandari, S.2    Kiyazar, S.3    Aghazadeh, J.4    Sadeghi, A.5
  • 37
    • 84882411939 scopus 로고    scopus 로고
    • Synthesis and characterization of chitosan-graft-poly(n-allyl maleamic acid) hydrogel membrane
    • [37] Saber-Samandari, S., Gazi, M., Yilmaz, O., Synthesis and characterization of chitosan-graft-poly(n-allyl maleamic acid) hydrogel membrane. Water Air Soil Pollut., 224, 2013, 1624.
    • (2013) Water Air Soil Pollut. , vol.224 , pp. 1624
    • Saber-Samandari, S.1    Gazi, M.2    Yilmaz, O.3
  • 38
    • 84926004397 scopus 로고    scopus 로고
    • Mesoporous carbon as a carrier for celecoxib: the improved inhibition effect on MDA-MB-231 cells migration and invasion
    • [38] Zhu, W., Zhao, W., Zheng, X., Zhang, Z., Jiang, T., Li, Y., Wang, S., Mesoporous carbon as a carrier for celecoxib: the improved inhibition effect on MDA-MB-231 cells migration and invasion. Asian J. Pharm. Sci. 9 (2014), 82–91.
    • (2014) Asian J. Pharm. Sci. , vol.9 , pp. 82-91
    • Zhu, W.1    Zhao, W.2    Zheng, X.3    Zhang, Z.4    Jiang, T.5    Li, Y.6    Wang, S.7
  • 39
    • 84964403881 scopus 로고    scopus 로고
    • Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: the impact of hydroxyapatite
    • [39] Saber-Samandari, S., Saber-Samandari, S., Ghonjizade-Samani, F., Aghazadeh, J., Sadeghi, A., Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: the impact of hydroxyapatite. Ceram. Int. 42 (2016), 11055–11062.
    • (2016) Ceram. Int. , vol.42 , pp. 11055-11062
    • Saber-Samandari, S.1    Saber-Samandari, S.2    Ghonjizade-Samani, F.3    Aghazadeh, J.4    Sadeghi, A.5
  • 40
    • 84875753928 scopus 로고    scopus 로고
    • The vibrational features of hydroxylapatite and type A carbonated apatite: a first principle contribution
    • [40] Ulian, G., Valdre, G., Corno, M., Ugliengo, P., The vibrational features of hydroxylapatite and type A carbonated apatite: a first principle contribution. Am. Mineral. 98 (2013), 752–759.
    • (2013) Am. Mineral. , vol.98 , pp. 752-759
    • Ulian, G.1    Valdre, G.2    Corno, M.3    Ugliengo, P.4
  • 41
    • 84887154943 scopus 로고    scopus 로고
    • Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite
    • [41] Saber-Samandari, S., Alamara, K., Saber-Samandari, S., Gross, K.A., Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite. Acta Biomater. 9 (2013), 9538–9546.
    • (2013) Acta Biomater. , vol.9 , pp. 9538-9546
    • Saber-Samandari, S.1    Alamara, K.2    Saber-Samandari, S.3    Gross, K.A.4
  • 42
    • 67649381475 scopus 로고    scopus 로고
    • Nanoindentation on the surface of thermally sprayed coatings
    • [42] Gross, K.A., Saber-Samandari, S., Nanoindentation on the surface of thermally sprayed coatings. Surf. Coat. Technol. 203 (2009), 3516–3520.
    • (2009) Surf. Coat. Technol. , vol.203 , pp. 3516-3520
    • Gross, K.A.1    Saber-Samandari, S.2
  • 43
    • 0035880547 scopus 로고    scopus 로고
    • Porosity determinations in thermally sprayed hydroxyapatite coatings
    • [43] Mancini, C.E., Berndt, C.C., Sun, L., Kucuk, A., Porosity determinations in thermally sprayed hydroxyapatite coatings. J. Mater. Sci. 36 (2001), 3891–3896.
    • (2001) J. Mater. Sci. , vol.36 , pp. 3891-3896
    • Mancini, C.E.1    Berndt, C.C.2    Sun, L.3    Kucuk, A.4
  • 46
    • 79960563496 scopus 로고    scopus 로고
    • Compressive mechanical properties of demineralized and deproteinized cancellous bone
    • [46] Chen, P.Y., McKittrick, J., Compressive mechanical properties of demineralized and deproteinized cancellous bone. J. Mech. Behav. Biomed. Mater. 4 (2011), 961–973.
    • (2011) J. Mech. Behav. Biomed. Mater. , vol.4 , pp. 961-973
    • Chen, P.Y.1    McKittrick, J.2
  • 47
    • 84929285426 scopus 로고    scopus 로고
    • Mechanical properties of porous ceramic scaffolds: influence of internal dimensions
    • [47] Sabree, I., Gough, J.E., Derby, B., Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram. Int. 41 (2015), 8425–8432.
    • (2015) Ceram. Int. , vol.41 , pp. 8425-8432
    • Sabree, I.1    Gough, J.E.2    Derby, B.3
  • 48
    • 79960563496 scopus 로고    scopus 로고
    • Compressive mechanical properties of demineralized and deproteinized cancellous bone
    • [48] Chen, P.Y., McKittrick, J., Compressive mechanical properties of demineralized and deproteinized cancellous bone. J. Mech. Behav. Biomed. Mater. 4 (2011), 961–973.
    • (2011) J. Mech. Behav. Biomed. Mater. , vol.4 , pp. 961-973
    • Chen, P.Y.1    McKittrick, J.2
  • 49
    • 84913557747 scopus 로고    scopus 로고
    • Efficient removal of anionic and cationic dyes from an aqueous solution using pullulan-graft-polyacrylamide porous hydrogel
    • [49] Saber-Samandari, S., Gulcan, H.O., Saber-Samandari, S., Gazi, M., Efficient removal of anionic and cationic dyes from an aqueous solution using pullulan-graft-polyacrylamide porous hydrogel. Water Air Soil Pollut., 225, 2014, 2177.
    • (2014) Water Air Soil Pollut. , vol.225 , pp. 2177
    • Saber-Samandari, S.1    Gulcan, H.O.2    Saber-Samandari, S.3    Gazi, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.