-
1
-
-
84865488514
-
Three-dimensional graphene architectures
-
[1] Li, C., Shi, G., Three-dimensional graphene architectures. Nanoscale 4:18 (2012), 5549–5563.
-
(2012)
Nanoscale
, vol.4
, Issue.18
, pp. 5549-5563
-
-
Li, C.1
Shi, G.2
-
2
-
-
77955529587
-
Self-assembled graphene hydrogel via a one-step hydrothermal process
-
[2] Xu, Y., Sheng, K., Li, C., Shi, G., Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:7 (2010), 4324–4330.
-
(2010)
ACS Nano
, vol.4
, Issue.7
, pp. 4324-4330
-
-
Xu, Y.1
Sheng, K.2
Li, C.3
Shi, G.4
-
3
-
-
84905823144
-
Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts
-
[3] Huang, H., Yang, S., Vajtai, R., Wang, X., Ajayan, P.M., Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 26:30 (2014), 5160–5165.
-
(2014)
Adv. Mater.
, vol.26
, Issue.30
, pp. 5160-5165
-
-
Huang, H.1
Yang, S.2
Vajtai, R.3
Wang, X.4
Ajayan, P.M.5
-
4
-
-
84922917779
-
Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions
-
[4] Hong, J.Y., Bak, B.M., Wie, J.J., Kong, J., Park, H.S., Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions. Adv. Funct. Mater. 25 (2015), 1053–1062.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 1053-1062
-
-
Hong, J.Y.1
Bak, B.M.2
Wie, J.J.3
Kong, J.4
Park, H.S.5
-
5
-
-
84947763778
-
Chemical modification of graphene aerogels for electrochemical capacitor applications
-
[5] Hong, J.Y., Wie, J.J., Xu, Y., Park, H.S., Chemical modification of graphene aerogels for electrochemical capacitor applications. PhysChemChemPhys. 17 (2015), 30946–30962.
-
(2015)
PhysChemChemPhys.
, vol.17
, pp. 30946-30962
-
-
Hong, J.Y.1
Wie, J.J.2
Xu, Y.3
Park, H.S.4
-
6
-
-
79953825199
-
High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide
-
[6] Sheng, K-x, Xu, Y-x, Chun, L., Shi, G-q, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26:1 (2011), 9–15.
-
(2011)
New Carbon Mater.
, vol.26
, Issue.1
, pp. 9-15
-
-
Sheng, K.-X.1
Xu, Y.-X.2
Chun, L.3
Shi, G.-Q.4
-
7
-
-
84859755491
-
Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering
-
[7] Sheng, K., Sun, Y., Li, C., Yuan, W., Shi, G., Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep., 2012, 2.
-
(2012)
Sci. Rep.
, pp. 2
-
-
Sheng, K.1
Sun, Y.2
Li, C.3
Yuan, W.4
Shi, G.5
-
8
-
-
84870956336
-
A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide
-
[8] Li, Y., Sheng, K., Yuan, W., Shi, G., A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem. Commun. 49:3 (2013), 291–293.
-
(2013)
Chem. Commun.
, vol.49
, Issue.3
, pp. 291-293
-
-
Li, Y.1
Sheng, K.2
Yuan, W.3
Shi, G.4
-
9
-
-
84874618873
-
Three-dimensional graphene network assisted high performance dye sensitized solar cells
-
[9] Tang, B., Hu, G., Gao, H., Shi, Z., Three-dimensional graphene network assisted high performance dye sensitized solar cells. J. Power Sources 234 (2013), 60–68.
-
(2013)
J. Power Sources
, vol.234
, pp. 60-68
-
-
Tang, B.1
Hu, G.2
Gao, H.3
Shi, Z.4
-
10
-
-
84862530667
-
High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner
-
[10] Ning, G., Xu, C., Mu, L., Chen, G., Wang, G., Gao, J., et al. High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner. Chem. Commun. 48:54 (2012), 6815–6817.
-
(2012)
Chem. Commun.
, vol.48
, Issue.54
, pp. 6815-6817
-
-
Ning, G.1
Xu, C.2
Mu, L.3
Chen, G.4
Wang, G.5
Gao, J.6
-
11
-
-
84862894222
-
3D macroporous graphene frameworks for supercapacitors with high energy and power densities
-
[11] Choi, B.G., Yang, M., Hong, W.H., Choi, J.W., Huh, Y.S., 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:5 (2012), 4020–4028.
-
(2012)
ACS Nano
, vol.6
, Issue.5
, pp. 4020-4028
-
-
Choi, B.G.1
Yang, M.2
Hong, W.H.3
Choi, J.W.4
Huh, Y.S.5
-
12
-
-
84940848264
-
Ice-templated self-assembly of VOPO4–graphene nanocomposites for vertically porous 3D supercapacitor electrodes
-
[12] Lee, K.H., Lee, Y.-W., Lee, S.W., Ha, J.S., Lee, S.-S., Son, J.G., Ice-templated self-assembly of VOPO4–graphene nanocomposites for vertically porous 3D supercapacitor electrodes. Sci. Rep., 2015, 5.
-
(2015)
Sci. Rep.
, pp. 5
-
-
Lee, K.H.1
Lee, Y.-W.2
Lee, S.W.3
Ha, J.S.4
Lee, S.-S.5
Son, J.G.6
-
13
-
-
79957453783
-
Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
-
[13] Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10:6 (2011), 424–428.
-
(2011)
Nat. Mater.
, vol.10
, Issue.6
, pp. 424-428
-
-
Chen, Z.1
Ren, W.2
Gao, L.3
Liu, B.4
Pei, S.5
Cheng, H.-M.6
-
14
-
-
84860380328
-
3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection
-
[14] Dong, X.-C., Xu, H., Wang, X.-W., Huang, Y.-X., Chan-Park, M.B., Zhang, H., et al. 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:4 (2012), 3206–3213.
-
(2012)
ACS Nano
, vol.6
, Issue.4
, pp. 3206-3213
-
-
Dong, X.-C.1
Xu, H.2
Wang, X.-W.3
Huang, Y.-X.4
Chan-Park, M.B.5
Zhang, H.6
-
15
-
-
64849096894
-
3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage
-
[15] Wang, D.W., Li, F., Liu, M., Lu, G.Q., Cheng, H.M., 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. 120:2 (2008), 379–382.
-
(2008)
Angew. Chem.
, vol.120
, Issue.2
, pp. 379-382
-
-
Wang, D.W.1
Li, F.2
Liu, M.3
Lu, G.Q.4
Cheng, H.M.5
-
16
-
-
84870396374
-
Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations
-
[16] Zhao, J., Ren, W., Cheng, H.-M., Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 22:38 (2012), 20197–20202.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.38
, pp. 20197-20202
-
-
Zhao, J.1
Ren, W.2
Cheng, H.-M.3
-
17
-
-
84859773740
-
High sensitivity gas detection using a macroscopic three-dimensional graphene foam network
-
[17] Yavari, F., Chen, Z., Thomas, A.V., Ren, W., Cheng, H.-M., Koratkar, N., High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep., 2011, 1.
-
(2011)
Sci. Rep.
, pp. 1
-
-
Yavari, F.1
Chen, Z.2
Thomas, A.V.3
Ren, W.4
Cheng, H.-M.5
Koratkar, N.6
-
18
-
-
6444244907
-
Crystalline ropes of metallic carbon nanotubes
-
[18] Thess, A., Lee, R., Nikolaev, P., Dai, H., Crystalline ropes of metallic carbon nanotubes. Science, 273(5274), 1996, 483.
-
(1996)
Science
, vol.273
, Issue.5274
, pp. 483
-
-
Thess, A.1
Lee, R.2
Nikolaev, P.3
Dai, H.4
-
19
-
-
84857146705
-
Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells
-
[19] Li, S., Luo, Y., Lv, W., Yu, W., Wu, S., Hou, P., et al. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv. Energy Mater. 1:4 (2011), 486–490.
-
(2011)
Adv. Energy Mater.
, vol.1
, Issue.4
, pp. 486-490
-
-
Li, S.1
Luo, Y.2
Lv, W.3
Yu, W.4
Wu, S.5
Hou, P.6
-
20
-
-
33845185785
-
Effect of catalyst oxidation on the growth of carbon nanotubes by thermal chemical vapor deposition
-
[20] Sato, H., Hori, Y., Hata, K., Seko, K., Nakahara, H., Saito, Y., Effect of catalyst oxidation on the growth of carbon nanotubes by thermal chemical vapor deposition. J. Appl. Phys., 100(10), 2006, 104321.
-
(2006)
J. Appl. Phys.
, vol.100
, Issue.10
, pp. 104321
-
-
Sato, H.1
Hori, Y.2
Hata, K.3
Seko, K.4
Nakahara, H.5
Saito, Y.6
-
21
-
-
0002318025
-
Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition
-
[21] Lee, C.J., Park, J., Huh, Y., Lee, J.Y., Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 343:1 (2001), 33–38.
-
(2001)
Chem. Phys. Lett.
, vol.343
, Issue.1
, pp. 33-38
-
-
Lee, C.J.1
Park, J.2
Huh, Y.3
Lee, J.Y.4
-
22
-
-
33644906968
-
Multibranching carbon nanotubes via self-seeded catalysts
-
[22] AuBuchon, J.F., Chen, L.-H., Daraio, C., Jin, S., Multibranching carbon nanotubes via self-seeded catalysts. Nano Lett. 6:2 (2006), 324–328.
-
(2006)
Nano Lett.
, vol.6
, Issue.2
, pp. 324-328
-
-
AuBuchon, J.F.1
Chen, L.-H.2
Daraio, C.3
Jin, S.4
-
23
-
-
11044225403
-
Control of carbon nanotube morphology by change of applied bias field during growth
-
[23] Chen, L.-H., AuBuchon, J., Gapin, A., Daraio, C., Bandaru, P., Jin, S., et al. Control of carbon nanotube morphology by change of applied bias field during growth. Appl. Phys. Lett. 85:22 (2004), 5373–5375.
-
(2004)
Appl. Phys. Lett.
, vol.85
, Issue.22
, pp. 5373-5375
-
-
Chen, L.-H.1
AuBuchon, J.2
Gapin, A.3
Daraio, C.4
Bandaru, P.5
Jin, S.6
-
24
-
-
84883600213
-
Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery
-
[24] Bae, S.-H., Karthikeyan, K., Lee, Y.-S., Oh, I.-K., Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery. Carbon 64 (2013), 527–536.
-
(2013)
Carbon
, vol.64
, pp. 527-536
-
-
Bae, S.-H.1
Karthikeyan, K.2
Lee, Y.-S.3
Oh, I.-K.4
-
25
-
-
84878317888
-
Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode
-
[25] Lee, S.-H., Sridhar, V., Jung, J.-H., Karthikeyan, K., Lee, Y.-S., Mukherjee, R., et al. Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:5 (2013), 4242–4251.
-
(2013)
ACS Nano
, vol.7
, Issue.5
, pp. 4242-4251
-
-
Lee, S.-H.1
Sridhar, V.2
Jung, J.-H.3
Karthikeyan, K.4
Lee, Y.-S.5
Mukherjee, R.6
-
26
-
-
0030846661
-
Large-scale production of single-walled carbon nanotubes by the electric-arc technique
-
[26] Journet, C., Maser, W., Bernier, P., Loiseau, A., De La Chapelle, M.L., Lefrant, dlS., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:6644 (1997), 756–758.
-
(1997)
Nature
, vol.388
, Issue.6644
, pp. 756-758
-
-
Journet, C.1
Maser, W.2
Bernier, P.3
Loiseau, A.4
De La Chapelle, M.L.5
Lefrant, D.6
-
27
-
-
0034680752
-
Macroscopic fibers and ribbons of oriented carbon nanotubes
-
[27] Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:5495 (2000), 1331–1334.
-
(2000)
Science
, vol.290
, Issue.5495
, pp. 1331-1334
-
-
Vigolo, B.1
Penicaud, A.2
Coulon, C.3
Sauder, C.4
Pailler, R.5
Journet, C.6
-
28
-
-
8844232743
-
Multifunctional carbon nanotube yarns by downsizing an ancient technology
-
[28] Zhang, M., Atkinson, K.R., Baughman, R.H., Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306:5700 (2004), 1358–1361.
-
(2004)
Science
, vol.306
, Issue.5700
, pp. 1358-1361
-
-
Zhang, M.1
Atkinson, K.R.2
Baughman, R.H.3
-
29
-
-
84923478318
-
Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors
-
[29] Pham, D.T., Lee, T.H., Luong, D.H., Yao, F., Ghosh, A., Le, V.T., et al. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9:2 (2015), 2018–2027.
-
(2015)
ACS Nano
, vol.9
, Issue.2
, pp. 2018-2027
-
-
Pham, D.T.1
Lee, T.H.2
Luong, D.H.3
Yao, F.4
Ghosh, A.5
Le, V.T.6
-
30
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
[30] Tarascon, J.-M., Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 414:6861 (2001), 359–367.
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 359-367
-
-
Tarascon, J.-M.1
Armand, M.2
-
31
-
-
84975526647
-
Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage
-
[31] Lee, B., Lee, C., Liu, T., Eom, K., Chen, Z., Noda, S., et al. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale 8:24 (2016), 12330–12338.
-
(2016)
Nanoscale
, vol.8
, Issue.24
, pp. 12330-12338
-
-
Lee, B.1
Lee, C.2
Liu, T.3
Eom, K.4
Chen, Z.5
Noda, S.6
-
32
-
-
33749679630
-
Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors
-
[32] Wu, C., Yin, P., Zhu, X., OuYang, C., Xie, Y., Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110:36 (2006), 17806–17812.
-
(2006)
J. Phys. Chem. B
, vol.110
, Issue.36
, pp. 17806-17812
-
-
Wu, C.1
Yin, P.2
Zhu, X.3
OuYang, C.4
Xie, Y.5
-
33
-
-
84867549460
-
1D hollow α-Fe 2 O 3 electrospun nanofibers as high performance anode material for lithium ion batteries
-
[33] Chaudhari, S., Srinivasan, M., 1D hollow α-Fe 2 O 3 electrospun nanofibers as high performance anode material for lithium ion batteries. J. Mater. Chem. 22:43 (2012), 23049–23056.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.43
, pp. 23049-23056
-
-
Chaudhari, S.1
Srinivasan, M.2
-
34
-
-
84867769396
-
Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties
-
[34] Zhang, L., Wu, H.B., Madhavi, S., Hng, H.H., Lou, X.W., Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134:42 (2012), 17388–17391.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.42
, pp. 17388-17391
-
-
Zhang, L.1
Wu, H.B.2
Madhavi, S.3
Hng, H.H.4
Lou, X.W.5
-
35
-
-
84866328109
-
Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries
-
[35] Xu, X., Cao, R., Jeong, S., Cho, J., Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 12:9 (2012), 4988–4991.
-
(2012)
Nano Lett.
, vol.12
, Issue.9
, pp. 4988-4991
-
-
Xu, X.1
Cao, R.2
Jeong, S.3
Cho, J.4
-
36
-
-
33947461960
-
Preparation of graphitic oxide
-
[36] Hummers, W.S. Jr., Offeman, R.E., Preparation of graphitic oxide. J. Am. Chem. Soc., 80(6), 1958, 1339.
-
(1958)
J. Am. Chem. Soc.
, vol.80
, Issue.6
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
37
-
-
84957030336
-
Multiscale textured, ultralight graphene monoliths for enhanced CO 2 and SO 2 adsorption capacity
-
[37] Yun, S., Lee, H., Lee, W.-E., Park, H.S., Multiscale textured, ultralight graphene monoliths for enhanced CO 2 and SO 2 adsorption capacity. Fuel 174 (2016), 36–42.
-
(2016)
Fuel
, vol.174
, pp. 36-42
-
-
Yun, S.1
Lee, H.2
Lee, W.-E.3
Park, H.S.4
-
38
-
-
84857533790
-
Nitrogen-and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer–Tropsch synthesis
-
[38] Schulte, H.J., Graf, B., Xia, W., Muhler, M., Nitrogen-and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer–Tropsch synthesis. ChemCatChem. 4:3 (2012), 350–355.
-
(2012)
ChemCatChem.
, vol.4
, Issue.3
, pp. 350-355
-
-
Schulte, H.J.1
Graf, B.2
Xia, W.3
Muhler, M.4
-
39
-
-
84870438545
-
The role of oxygen-and nitrogen-containing surface groups on the sintering of iron nanoparticles on carbon nanotubes in different atmospheres
-
[39] Sánchez, M.D., Chen, P., Reinecke, T., Muhler, M., Xia, W., The role of oxygen-and nitrogen-containing surface groups on the sintering of iron nanoparticles on carbon nanotubes in different atmospheres. ChemCatChem. 4:12 (2012), 1997–2004.
-
(2012)
ChemCatChem.
, vol.4
, Issue.12
, pp. 1997-2004
-
-
Sánchez, M.D.1
Chen, P.2
Reinecke, T.3
Muhler, M.4
Xia, W.5
-
40
-
-
68749100076
-
Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction
-
[40] Kundu, S., Nagaiah, T.C., Xia, W., Wang, Y., Dommele, S.V., Bitter, J.H., et al. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 113:32 (2009), 14302–14310.
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.32
, pp. 14302-14310
-
-
Kundu, S.1
Nagaiah, T.C.2
Xia, W.3
Wang, Y.4
Dommele, S.V.5
Bitter, J.H.6
-
41
-
-
77951468406
-
The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study
-
[41] Kundu, S., Xia, W., Busser, W., Becker, M., Schmidt, D.A., Havenith, M., et al. The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys. Chem. Chem. Phys. 12:17 (2010), 4351–4359.
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, Issue.17
, pp. 4351-4359
-
-
Kundu, S.1
Xia, W.2
Busser, W.3
Becker, M.4
Schmidt, D.A.5
Havenith, M.6
-
42
-
-
28044467988
-
Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers
-
[42] Xia, W., Su, D., Birkner, A., Ruppel, L., Wang, Y., Wöll, C., et al. Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers. Chem. Mater. 17:23 (2005), 5737–5742.
-
(2005)
Chem. Mater.
, vol.17
, Issue.23
, pp. 5737-5742
-
-
Xia, W.1
Su, D.2
Birkner, A.3
Ruppel, L.4
Wang, Y.5
Wöll, C.6
-
43
-
-
79955555293
-
Hydrazine-reduction of graphite-and graphene oxide
-
[43] Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., Ruoff, R.S., Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:9 (2011), 3019–3023.
-
(2011)
Carbon
, vol.49
, Issue.9
, pp. 3019-3023
-
-
Park, S.1
An, J.2
Potts, J.R.3
Velamakanni, A.4
Murali, S.5
Ruoff, R.S.6
-
44
-
-
0343777531
-
Standard X-ray Diffraction Powder Patterns: Section 18. Data for
-
[44] Morris, M., McMurdie, H., Evans, E., Paretzkin, B., Parker, H., Panagiotopoulos, N., Standard X-ray Diffraction Powder Patterns: Section 18. Data for. 1981, 58.
-
(1981)
, pp. 58
-
-
Morris, M.1
McMurdie, H.2
Evans, E.3
Paretzkin, B.4
Parker, H.5
Panagiotopoulos, N.6
-
45
-
-
0017907723
-
An X-ray photo-electron spectroscopic study of the films on coloured stainless steel and coloured ‘nilomag'alloy 771
-
[45] Ansell, R., Dickinson, T., Povey, A., An X-ray photo-electron spectroscopic study of the films on coloured stainless steel and coloured ‘nilomag'alloy 771. Corros. Sci. 18:3 (1978), 245–256.
-
(1978)
Corros. Sci.
, vol.18
, Issue.3
, pp. 245-256
-
-
Ansell, R.1
Dickinson, T.2
Povey, A.3
-
46
-
-
37049127452
-
X-ray photoelectron spectroscopy of iron–oxygen systems
-
[46] Allen, G.C., Curtis, M.T., Hooper, A.J., Tucker, P.M., X-ray photoelectron spectroscopy of iron–oxygen systems. J. Chem. Soc. Dalton Trans. 14 (1974), 1525–1530.
-
(1974)
J. Chem. Soc. Dalton Trans.
, vol.14
, pp. 1525-1530
-
-
Allen, G.C.1
Curtis, M.T.2
Hooper, A.J.3
Tucker, P.M.4
-
47
-
-
0024031693
-
Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy
-
[47] Kuivila, C., Butt, J., Stair, P., Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 32:1 (1988), 99–121.
-
(1988)
Appl. Surf. Sci.
, vol.32
, Issue.1
, pp. 99-121
-
-
Kuivila, C.1
Butt, J.2
Stair, P.3
-
48
-
-
77949880674
-
The chemistry of graphene oxide
-
[48] Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., The chemistry of graphene oxide. Chem. Soc. Rev. 39:1 (2010), 228–240.
-
(2010)
Chem. Soc. Rev.
, vol.39
, Issue.1
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
49
-
-
57049122772
-
Aqueous suspension and characterization of chemically modified graphene sheets
-
[49] Park, S., An, J., Piner, R.D., Jung, I., Yang, D., Velamakanni, A., et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20:21 (2008), 6592–6594.
-
(2008)
Chem. Mater.
, vol.20
, Issue.21
, pp. 6592-6594
-
-
Park, S.1
An, J.2
Piner, R.D.3
Jung, I.4
Yang, D.5
Velamakanni, A.6
-
50
-
-
45149091086
-
Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking
-
[50] Park, S., Lee, K.-S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S., Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:3 (2008), 572–578.
-
(2008)
ACS Nano
, vol.2
, Issue.3
, pp. 572-578
-
-
Park, S.1
Lee, K.-S.2
Bozoklu, G.3
Cai, W.4
Nguyen, S.T.5
Ruoff, R.S.6
-
51
-
-
56949104599
-
Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy
-
[51] Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:1 (2009), 145–152.
-
(2009)
Carbon
, vol.47
, Issue.1
, pp. 145-152
-
-
Yang, D.1
Velamakanni, A.2
Bozoklu, G.3
Park, S.4
Stoller, M.5
Piner, R.D.6
-
52
-
-
64149126156
-
Raman spectroscopy in graphene
-
[52] Malard, L., Pimenta, M., Dresselhaus, G., Dresselhaus, M., Raman spectroscopy in graphene. Phys. Rep. 473:5 (2009), 51–87.
-
(2009)
Phys. Rep.
, vol.473
, Issue.5
, pp. 51-87
-
-
Malard, L.1
Pimenta, M.2
Dresselhaus, G.3
Dresselhaus, M.4
-
53
-
-
84860655534
-
The reduction of graphene oxide
-
[53] Pei, S., Cheng, H.-M., The reduction of graphene oxide. Carbon 50:9 (2012), 3210–3228.
-
(2012)
Carbon
, vol.50
, Issue.9
, pp. 3210-3228
-
-
Pei, S.1
Cheng, H.-M.2
-
54
-
-
18844407480
-
Raman microspectroscopy of some iron oxides and oxyhydroxides
-
[54] De Faria, D., Venâncio Silva, S., De Oliveira, M., Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28:11 (1997), 873–878.
-
(1997)
J. Raman Spectrosc.
, vol.28
, Issue.11
, pp. 873-878
-
-
De Faria, D.1
Venâncio Silva, S.2
De Oliveira, M.3
-
55
-
-
84861066707
-
Atomic oxygen on graphite: chemical characterization and thermal reduction
-
[55] Larciprete, R., Lacovig, P., Gardonio, S., Baraldi, A., Lizzit, S., Atomic oxygen on graphite: chemical characterization and thermal reduction. J. Phys. Chem. C 116:18 (2012), 9900–9908.
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.18
, pp. 9900-9908
-
-
Larciprete, R.1
Lacovig, P.2
Gardonio, S.3
Baraldi, A.4
Lizzit, S.5
-
56
-
-
84878343859
-
4 nanoparticles as a high-rate lithium ion battery anode material
-
4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:5 (2013), 4459–4469.
-
(2013)
ACS Nano
, vol.7
, Issue.5
, pp. 4459-4469
-
-
He, C.1
Wu, S.2
Zhao, N.3
Shi, C.4
Liu, E.5
Li, J.6
-
57
-
-
79960726856
-
An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries
-
[57] Yang, Z., Shen, J., Archer, L.A., An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries. J. Mater. Chem. 21:30 (2011), 11092–11097.
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.30
, pp. 11092-11097
-
-
Yang, Z.1
Shen, J.2
Archer, L.A.3
-
58
-
-
72149119112
-
Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries
-
[58] Piao, Y., Kim, H.S., Sung, Y.-E., Hyeon, T., Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chem. Commun. 46:1 (2010), 118–120.
-
(2010)
Chem. Commun.
, vol.46
, Issue.1
, pp. 118-120
-
-
Piao, Y.1
Kim, H.S.2
Sung, Y.-E.3
Hyeon, T.4
-
59
-
-
79956111260
-
4@ carbon nanorods for application in lithium ion batteries
-
4@ carbon nanorods for application in lithium ion batteries. J. Phys. Chem. C 115:19 (2011), 9814–9820.
-
(2011)
J. Phys. Chem. C
, vol.115
, Issue.19
, pp. 9814-9820
-
-
Zhu, T.1
Chen, J.S.2
Lou, X.W.3
-
60
-
-
16244395203
-
3 nanotubes in gas sensor and lithium-ion battery applications
-
3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17:5 (2005), 582–586.
-
(2005)
Adv. Mater.
, vol.17
, Issue.5
, pp. 582-586
-
-
Chen, J.1
Xu, L.2
Li, W.3
-
61
-
-
0037255154
-
Effect of particle size on lithium intercalation into α Fe2 O 3
-
[61] Larcher, D., Masquelier, C., Bonnin, D., Chabre, Y., Masson, V., Leriche, J.-B., et al. Effect of particle size on lithium intercalation into α Fe2 O 3. J. Electrochem. Soc. 150:1 (2003), A133–A139.
-
(2003)
J. Electrochem. Soc.
, vol.150
, Issue.1
, pp. A133-A139
-
-
Larcher, D.1
Masquelier, C.2
Bonnin, D.3
Chabre, Y.4
Masson, V.5
Leriche, J.-B.6
-
62
-
-
25644448795
-
Synthesis and characterization of nanometric iron and iron-titanium oxides by mechanical milling: electrochemical properties as anodic materials in lithium cells
-
[62] Morales, J., Sánchez, L., Martín, F., Berry, F., Ren, X., Synthesis and characterization of nanometric iron and iron-titanium oxides by mechanical milling: electrochemical properties as anodic materials in lithium cells. J. Electrochem. Soc. 152:9 (2005), A1748–A1754.
-
(2005)
J. Electrochem. Soc.
, vol.152
, Issue.9
, pp. A1748-A1754
-
-
Morales, J.1
Sánchez, L.2
Martín, F.3
Berry, F.4
Ren, X.5
-
63
-
-
0346421183
-
3 with various particle sizes
-
3 with various particle sizes. J. Electrochem. Soc. 150:12 (2003), A1643–A1650.
-
(2003)
J. Electrochem. Soc.
, vol.150
, Issue.12
, pp. A1643-A1650
-
-
Larcher, D.1
Bonnin, D.2
Cortes, R.3
Rivals, I.4
Personnaz, L.5
Tarascon, J.-M.6
-
64
-
-
79955384613
-
Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries
-
[64] Zhu, X., Zhu, Y., Murali, S., Stoller, M.D., Ruoff, R.S., Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:4 (2011), 3333–3338.
-
(2011)
ACS Nano
, vol.5
, Issue.4
, pp. 3333-3338
-
-
Zhu, X.1
Zhu, Y.2
Murali, S.3
Stoller, M.D.4
Ruoff, R.S.5
-
65
-
-
84937201788
-
Hierarchically structured reduced graphene oxide/WO 3 frameworks for an application into lithium ion battery anodes
-
[65] Park, S.K., Lee, H.J., Lee, M.H., Park, H.S., Hierarchically structured reduced graphene oxide/WO 3 frameworks for an application into lithium ion battery anodes. Chem. Eng. J. 281 (2015), 724–729.
-
(2015)
Chem. Eng. J.
, vol.281
, pp. 724-729
-
-
Park, S.K.1
Lee, H.J.2
Lee, M.H.3
Park, H.S.4
-
66
-
-
84902455886
-
Anomalous nanoinclusion effects of 2D MoS 2 and WS 2 nanosheets on the mechanical stiffness of polymer nanocomposites
-
[66] Kim, S.-K., Wie, J.J., Mahmood, Q., Park, H.S., Anomalous nanoinclusion effects of 2D MoS 2 and WS 2 nanosheets on the mechanical stiffness of polymer nanocomposites. Nanoscale 6:13 (2014), 7430–7435.
-
(2014)
Nanoscale
, vol.6
, Issue.13
, pp. 7430-7435
-
-
Kim, S.-K.1
Wie, J.J.2
Mahmood, Q.3
Park, H.S.4
-
67
-
-
84893233266
-
Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures
-
[67] Jiang, L., Fan, Z., Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6:4 (2014), 1922–1945.
-
(2014)
Nanoscale
, vol.6
, Issue.4
, pp. 1922-1945
-
-
Jiang, L.1
Fan, Z.2
-
68
-
-
84855185351
-
Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability
-
[68] Wang, Z., Luan, D., Madhavi, S., Hu, Y., Lou, X.W.D., Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy & Environ. Sci. 5:1 (2012), 5252–5256.
-
(2012)
Energy & Environ. Sci.
, vol.5
, Issue.1
, pp. 5252-5256
-
-
Wang, Z.1
Luan, D.2
Madhavi, S.3
Hu, Y.4
Lou, X.W.D.5
-
69
-
-
67649364188
-
Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries
-
[69] Zhang, H.X., Feng, C., Zhai, Y.C., Jiang, K.L., Li, Q.Q., Fan, S.S., Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater. 21:22 (2009), 2299–2304.
-
(2009)
Adv. Mater.
, vol.21
, Issue.22
, pp. 2299-2304
-
-
Zhang, H.X.1
Feng, C.2
Zhai, Y.C.3
Jiang, K.L.4
Li, Q.Q.5
Fan, S.S.6
-
70
-
-
77953165476
-
Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-Ion anode
-
[70] Ban, C., Wu, Z., Gillaspie, D.T., Chen, L., Yan, Y., Blackburn, J.L., et al. Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-Ion anode. Adv. Mater.(20), 2010, 22.
-
(2010)
Adv. Mater.
, Issue.20
, pp. 22
-
-
Ban, C.1
Wu, Z.2
Gillaspie, D.T.3
Chen, L.4
Yan, Y.5
Blackburn, J.L.6
-
71
-
-
0034727086
-
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
-
[71] Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:6803 (2000), 496–499.
-
(2000)
Nature
, vol.407
, Issue.6803
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.5
-
72
-
-
54949083023
-
Reversible lithium-ion insertion in molybdenum oxide nanoparticles
-
[72] Lee, S.H., Kim, Y.H., Deshpande, R., Parilla, P.A., Whitney, E., Gillaspie, D.T., et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 20:19 (2008), 3627–3632.
-
(2008)
Adv. Mater.
, vol.20
, Issue.19
, pp. 3627-3632
-
-
Lee, S.H.1
Kim, Y.H.2
Deshpande, R.3
Parilla, P.A.4
Whitney, E.5
Gillaspie, D.T.6
-
73
-
-
77958513289
-
Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets
-
[73] Su, Q., Liang, Y., Feng, X., Müllen, K., Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets. Chem. Commun. 46:43 (2010), 8279–8281.
-
(2010)
Chem. Commun.
, vol.46
, Issue.43
, pp. 8279-8281
-
-
Su, Q.1
Liang, Y.2
Feng, X.3
Müllen, K.4
-
74
-
-
79956344162
-
A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors
-
[74] Lu, X., Dou, H., Gao, B., Yuan, C., Yang, S., Hao, L., et al. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta 56:14 (2011), 5115–5121.
-
(2011)
Electrochimica Acta
, vol.56
, Issue.14
, pp. 5115-5121
-
-
Lu, X.1
Dou, H.2
Gao, B.3
Yuan, C.4
Yang, S.5
Hao, L.6
-
75
-
-
84946962675
-
-
[75] Shim, W., Kwon, Y., Jeon, S.-Y., Yu, W.-R., Optim. conductive Netw. randomly dispersed CNT graphene hybrids. Sci. Rep., 2015, 5.
-
(2015)
Optim. conductive Netw. randomly dispersed CNT graphene hybrids. Sci. Rep.
, pp. 5
-
-
Shim, W.1
Kwon, Y.2
Jeon, S.-Y.3
Yu, W.-R.4
-
76
-
-
84946832223
-
Intrinsically coupled 3D nGs@ CNTs frameworks as anode materials for lithium-ion batteries
-
[76] Chen, L., Jin, X., Wen, Y., Lan, H., Yu, X., Sun, D., et al. Intrinsically coupled 3D nGs@ CNTs frameworks as anode materials for lithium-ion batteries. Chem. Mater. 27:21 (2015), 7289–7295.
-
(2015)
Chem. Mater.
, vol.27
, Issue.21
, pp. 7289-7295
-
-
Chen, L.1
Jin, X.2
Wen, Y.3
Lan, H.4
Yu, X.5
Sun, D.6
-
77
-
-
84864673392
-
Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors
-
[77] Cheng, Y., Lu, S., Zhang, H., Varanasi, C.V., Liu, J., Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 12:8 (2012), 4206–4211.
-
(2012)
Nano Lett.
, vol.12
, Issue.8
, pp. 4206-4211
-
-
Cheng, Y.1
Lu, S.2
Zhang, H.3
Varanasi, C.V.4
Liu, J.5
-
78
-
-
84876737507
-
Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors
-
[78] Jin, Y., Chen, H., Chen, M., Liu, N., Li, Q., Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 5:8 (2013), 3408–3416.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, Issue.8
, pp. 3408-3416
-
-
Jin, Y.1
Chen, H.2
Chen, M.3
Liu, N.4
Li, Q.5
|