메뉴 건너뛰기




Volumn 130, Issue 5, 2017, Pages 601.e17-601.e22

Using the Electronic Medical Record to Identify Patients at High Risk for Frequent Emergency Department Visits and High System Costs

Author keywords

Electronic medical records; Frequent emergency department visits; High users; Machine learning; Predictive modeling

Indexed keywords

ADULT; ARTICLE; ELECTRONIC MEDICAL RECORD; EMERGENCY WARD; HEALTH CARE COST; HEALTH CARE SYSTEM; HEALTH CARE UTILIZATION; HIGH RISK POPULATION; HUMAN; MACHINE LEARNING; MAJOR CLINICAL STUDY; PATIENT IDENTIFICATION; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; ALGORITHM; DATA MINING; ECONOMICS; ELECTRONIC HEALTH RECORD; HOSPITAL COST; HOSPITAL EMERGENCY SERVICE; STATISTICAL MODEL; UTILIZATION;

EID: 85011954158     PISSN: 00029343     EISSN: 15557162     Source Type: Journal    
DOI: 10.1016/j.amjmed.2016.12.008     Document Type: Article
Times cited : (36)

References (38)
  • 1
    • 85017622643 scopus 로고    scopus 로고
    • Portrait of the Canadian Population in by age and sex
    • Available at: Accessed January 5.
    • 1 Portrait of the Canadian Population in by age and sex. Available at: http://www12.statcan.ca/english/census06/analysis/agesex/NatlPortrait2.cfm. Accessed January 5, 2016.
    • (2016)
  • 2
    • 85017613481 scopus 로고    scopus 로고
    • Available at: Accessed January 5.
    • 2 Why health care renewal matters: learning from Canadians with chronic health conditions. Available at: http://www.healthcouncilcanada.ca/tree/2.20-Outcomes2FINAL.pdf. Accessed January 5, 2016.
    • (2016)
  • 3
    • 85017620826 scopus 로고    scopus 로고
    • Ideas and Opportunities for Bending the Health Care Cost Curve
    • Available at: Accessed January 5, 2016
    • 3 Ideas and Opportunities for Bending the Health Care Cost Curve. Available at: https://www.oha.com/KnowledgeCentre/Library/Documents/Bending%20the%20Health%20Care%20Cost%20Curve%20(Final%20Report%20-%20April%2013%202010).pdf Accessed January 5, 2016.
  • 4
    • 84979907738 scopus 로고    scopus 로고
    • ACOs and high-cost patients
    • 4 Powers, B.W., Chaguturu, S.K., ACOs and high-cost patients. N Engl J Med 374 (2016), 203–205.
    • (2016) N Engl J Med , vol.374 , pp. 203-205
    • Powers, B.W.1    Chaguturu, S.K.2
  • 5
    • 84958720937 scopus 로고    scopus 로고
    • A 3-year study of high-cost users of health care
    • 5 Wodchis, W.P., Austin, P.C., Henry, D.A., A 3-year study of high-cost users of health care. CMAJ 188 (2016), 182–188.
    • (2016) CMAJ , vol.188 , pp. 182-188
    • Wodchis, W.P.1    Austin, P.C.2    Henry, D.A.3
  • 6
    • 13444272963 scopus 로고    scopus 로고
    • Follow up of people aged 65 and over with a history of emergency admissions: analysis of routine admission data
    • 6 Roland, M., Dusheiko, M., Gravelle, H., Parker, S., Follow up of people aged 65 and over with a history of emergency admissions: analysis of routine admission data. BMJ 330 (2005), 289–292.
    • (2005) BMJ , vol.330 , pp. 289-292
    • Roland, M.1    Dusheiko, M.2    Gravelle, H.3    Parker, S.4
  • 8
    • 77953772801 scopus 로고    scopus 로고
    • “Impactibility models”: identifying the subgroup of high-risk patients most amenable to hospital-avoidance programs
    • 8 Lewis, G.H., “Impactibility models”: identifying the subgroup of high-risk patients most amenable to hospital-avoidance programs. Milbank Q 88 (2010), 240–255.
    • (2010) Milbank Q , vol.88 , pp. 240-255
    • Lewis, G.H.1
  • 9
    • 33750955505 scopus 로고    scopus 로고
    • Using individualized predictive disease modeling to identify patients with the potential to benefit from a disease management program for diabetes mellitus
    • 9 Weber, C., Neeser, K., Using individualized predictive disease modeling to identify patients with the potential to benefit from a disease management program for diabetes mellitus. Dis Manag 9 (2006), 242–256.
    • (2006) Dis Manag , vol.9 , pp. 242-256
    • Weber, C.1    Neeser, K.2
  • 10
    • 84904128037 scopus 로고    scopus 로고
    • Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials
    • 10 Leppin, A.L., Gionfriddo, M.R., Kessler, M., et al. Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA Intern Med 174 (2014), 1095–1107.
    • (2014) JAMA Intern Med , vol.174 , pp. 1095-1107
    • Leppin, A.L.1    Gionfriddo, M.R.2    Kessler, M.3
  • 11
    • 84899929471 scopus 로고    scopus 로고
    • Predicting and preventing avoidable hospital admissions: a review
    • 11 Purdey, S., Huntley, A., Predicting and preventing avoidable hospital admissions: a review. J R Coll Physicians Edinb 43 (2013), 340–344.
    • (2013) J R Coll Physicians Edinb , vol.43 , pp. 340-344
    • Purdey, S.1    Huntley, A.2
  • 12
    • 84907424710 scopus 로고    scopus 로고
    • Effect of a postdischarge virtual ward on readmission or death for high-risk patients: a randomized clinical trial
    • 12 Dhalla, I.A., O'Brien, T., Morra, D., et al. Effect of a postdischarge virtual ward on readmission or death for high-risk patients: a randomized clinical trial. JAMA 312 (2014), 1305–1312.
    • (2014) JAMA , vol.312 , pp. 1305-1312
    • Dhalla, I.A.1    O'Brien, T.2    Morra, D.3
  • 13
    • 0029932938 scopus 로고    scopus 로고
    • Using a mailed survey to predict hospital admission among patients older than 80
    • 13 Freedman, J.D., Beck, A., Robertson, B., Calonge, B.N., Gade, G., Using a mailed survey to predict hospital admission among patients older than 80. J Am Geriatr Soc 44 (1996), 689–692.
    • (1996) J Am Geriatr Soc , vol.44 , pp. 689-692
    • Freedman, J.D.1    Beck, A.2    Robertson, B.3    Calonge, B.N.4    Gade, G.5
  • 14
    • 34447291117 scopus 로고    scopus 로고
    • Predicting the likelihood of emergency admission to hospital of older people: development and validation of the Emergency Admission Risk Likelihood Index (EARLI)
    • 14 Lyon, D., Lancaster, G.A., Taylor, S., Dowrick, C., Chellaswamy, H., Predicting the likelihood of emergency admission to hospital of older people: development and validation of the Emergency Admission Risk Likelihood Index (EARLI). Fam Pract 24 (2007), 158–167.
    • (2007) Fam Pract , vol.24 , pp. 158-167
    • Lyon, D.1    Lancaster, G.A.2    Taylor, S.3    Dowrick, C.4    Chellaswamy, H.5
  • 15
    • 0036716311 scopus 로고    scopus 로고
    • Development of a method to identify seniors at high risk for high hospital utilization
    • 15 Reuben, D.B., Keeler, E., Seeman, T.E., Sewall, A., Hirsch, S.H., Guralnik, J.M., Development of a method to identify seniors at high risk for high hospital utilization. Med Care 40 (2002), 782–793.
    • (2002) Med Care , vol.40 , pp. 782-793
    • Reuben, D.B.1    Keeler, E.2    Seeman, T.E.3    Sewall, A.4    Hirsch, S.H.5    Guralnik, J.M.6
  • 16
    • 33748653578 scopus 로고    scopus 로고
    • Identifying patients at high risk of emergency hospital admissions: a logistic regression analysis
    • 16 Bottle, A., Aylin, P., Majeed, A., Identifying patients at high risk of emergency hospital admissions: a logistic regression analysis. J R Soc Med 99 (2006), 406–414.
    • (2006) J R Soc Med , vol.99 , pp. 406-414
    • Bottle, A.1    Aylin, P.2    Majeed, A.3
  • 17
    • 47549115392 scopus 로고    scopus 로고
    • Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study
    • 17 Donnan, P.T., Dorward, D.W., Mutch, B., Morris, A.D., Development and validation of a model for predicting emergency admissions over the next year (PEONY): a UK historical cohort study. Arch Intern Med 168 (2008), 1416–1422.
    • (2008) Arch Intern Med , vol.168 , pp. 1416-1422
    • Donnan, P.T.1    Dorward, D.W.2    Mutch, B.3    Morris, A.D.4
  • 18
    • 84931075602 scopus 로고    scopus 로고
    • Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: validation and comparison to existing models
    • 18 Amarasingham, R., Velasco, F., Xie, B., et al. Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: validation and comparison to existing models. BMC Med Inform Decis Mak, 15, 2015, 39.
    • (2015) BMC Med Inform Decis Mak , vol.15 , pp. 39
    • Amarasingham, R.1    Velasco, F.2    Xie, B.3
  • 19
    • 84865230786 scopus 로고    scopus 로고
    • An electronic medical record-based model to predict 30-day risk of readmission and death among HIV-infected inpatients
    • 19 Nijhawan, A.E., Clark, C., Kaplan, R., Moore, B., Halm, E.A., Amarasingham, R., An electronic medical record-based model to predict 30-day risk of readmission and death among HIV-infected inpatients. J Acquir Immune Defic Syndr 61 (2012), 349–358.
    • (2012) J Acquir Immune Defic Syndr , vol.61 , pp. 349-358
    • Nijhawan, A.E.1    Clark, C.2    Kaplan, R.3    Moore, B.4    Halm, E.A.5    Amarasingham, R.6
  • 20
    • 84906839061 scopus 로고    scopus 로고
    • Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data
    • 20 Rana, S., Tran, T., Luo, W., Phung, D., Kennedy, R.L., Venkatesh, S., Predicting unplanned readmission after myocardial infarction from routinely collected administrative hospital data. Aust Health Rev 38 (2014), 377–382.
    • (2014) Aust Health Rev , vol.38 , pp. 377-382
    • Rana, S.1    Tran, T.2    Luo, W.3    Phung, D.4    Kennedy, R.L.5    Venkatesh, S.6
  • 21
    • 33747607232 scopus 로고    scopus 로고
    • Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients
    • 21 Billings, J., Dixon, J., Mijanovich, T., Wennberg, D., Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. BMJ, 333, 2006, 327.
    • (2006) BMJ , vol.333 , pp. 327
    • Billings, J.1    Dixon, J.2    Mijanovich, T.3    Wennberg, D.4
  • 22
    • 84923062584 scopus 로고    scopus 로고
    • Patients in context–EHR capture of social and behavioral determinants of health
    • 22 Adler, N.E., Stead, W.W., Patients in context–EHR capture of social and behavioral determinants of health. N Engl J Med 372 (2015), 698–701.
    • (2015) N Engl J Med , vol.372 , pp. 698-701
    • Adler, N.E.1    Stead, W.W.2
  • 23
    • 84937513866 scopus 로고    scopus 로고
    • Looking beyond income and education: socioeconomic status gradients among future high-cost users of health care
    • 23 Fitzpatrick, T., Rosella, L.C., Calzavara, A., et al. Looking beyond income and education: socioeconomic status gradients among future high-cost users of health care. Am J Prev Med 49 (2015), 161–171.
    • (2015) Am J Prev Med , vol.49 , pp. 161-171
    • Fitzpatrick, T.1    Rosella, L.C.2    Calzavara, A.3
  • 24
    • 84899564545 scopus 로고    scopus 로고
    • Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments
    • 24 Tran, T., Luo, W., Phung, D., et al. Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. BMC Psychiatry, 14, 2014, 76.
    • (2014) BMC Psychiatry , vol.14 , pp. 76
    • Tran, T.1    Luo, W.2    Phung, D.3
  • 25
    • 84896630259 scopus 로고    scopus 로고
    • Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards*
    • 25 Churpek, M.M., Yuen, T.C., Park, S.Y., Gibbons, R., Edelson, D.P., Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards*. Crit Care Med 42 (2014), 841–848.
    • (2014) Crit Care Med , vol.42 , pp. 841-848
    • Churpek, M.M.1    Yuen, T.C.2    Park, S.Y.3    Gibbons, R.4    Edelson, D.P.5
  • 27
    • 38949129365 scopus 로고    scopus 로고
    • Cost-effectiveness of clinical case management for ED frequent users: results of a randomized trial
    • 27 Shumway, M., Boccellari, A., O'Brien, K., Okin, R.L., Cost-effectiveness of clinical case management for ED frequent users: results of a randomized trial. Am J Emerg Med 26 (2008), 155–164.
    • (2008) Am J Emerg Med , vol.26 , pp. 155-164
    • Shumway, M.1    Boccellari, A.2    O'Brien, K.3    Okin, R.L.4
  • 28
    • 84893528706 scopus 로고    scopus 로고
    • Emergency department waiting room: many requests, many insured and many primary care physician referrals
    • 28 Kamali, M.F., Jain, M., Jain, A.R., Schneider, S.M., Emergency department waiting room: many requests, many insured and many primary care physician referrals. Int J Emerg Med, 6, 2013, 35.
    • (2013) Int J Emerg Med , vol.6 , pp. 35
    • Kamali, M.F.1    Jain, M.2    Jain, A.R.3    Schneider, S.M.4
  • 29
    • 84893092897 scopus 로고    scopus 로고
    • Evaluation of Electronic Medical Record Administrative data Linked Database (EMRALD)
    • 29 Tu, K., Mitiku, T.F., Ivers, N.M., Evaluation of Electronic Medical Record Administrative data Linked Database (EMRALD). Am J Manag Care 20 (2014), e15–e21.
    • (2014) Am J Manag Care , vol.20 , pp. e15-e21
    • Tu, K.1    Mitiku, T.F.2    Ivers, N.M.3
  • 30
    • 84938913989 scopus 로고    scopus 로고
    • Are family physicians comprehensively using electronic medical records such that the data can be used for secondary purposes? A Canadian perspective
    • 30 Tu, K., Widdifield, J., Young, J., et al. Are family physicians comprehensively using electronic medical records such that the data can be used for secondary purposes? A Canadian perspective. BMC Med Inform Decis Mak, 15, 2015, 67.
    • (2015) BMC Med Inform Decis Mak , vol.15 , pp. 67
    • Tu, K.1    Widdifield, J.2    Young, J.3
  • 31
    • 84920830612 scopus 로고    scopus 로고
    • High-cost health care users in Ontario, Canada: demographic, socio-economic, and health status characteristics
    • 31 Rosella, L.C., Fitzpatrick, T., Wodchis, W.P., Calzavara, A., Manson, H., Goel, V., High-cost health care users in Ontario, Canada: demographic, socio-economic, and health status characteristics. BMC Health Serv Res, 14, 2014, 532.
    • (2014) BMC Health Serv Res , vol.14 , pp. 532
    • Rosella, L.C.1    Fitzpatrick, T.2    Wodchis, W.P.3    Calzavara, A.4    Manson, H.5    Goel, V.6
  • 32
    • 85017617507 scopus 로고    scopus 로고
    • Available at: Accessed January 5.
    • 32 National Ambulatory Care Reporting System (NACRS). Available at: http://www.cihi.ca/CIHI-ext-portal/internet/en/document/types+of+care/hospital+care/emergency+care/NACRS_METADATA. Accessed January 5, 2016.
    • (2016)
  • 33
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • 33 Tibshirani, R., Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol 1 (1996), 267–288.
    • (1996) J R Stat Soc Series B Stat Methodol , vol.1 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 84870539308 scopus 로고    scopus 로고
    • Guidelines on Person-Level Costing Using Administrative Databases in Ontario
    • in Working Paper Series 2013: Health System Performance Research Network; Ontario, Canada.
    • 34 Wodchis W, Bushmeneva K, Nikitovic M, McKillop I. Guidelines on Person-Level Costing Using Administrative Databases in Ontario, in Working Paper Series 2013: Health System Performance Research Network; Ontario, Canada, 2013.
    • (2013)
    • Wodchis, W.1    Bushmeneva, K.2    Nikitovic, M.3    McKillop, I.4
  • 35
    • 84922311079 scopus 로고    scopus 로고
    • A system in name only–access, variation, and reform in Canada's provinces
    • 35 Lewis, S., A system in name only–access, variation, and reform in Canada's provinces. N Engl J Med 372 (2015), 497–500.
    • (2015) N Engl J Med , vol.372 , pp. 497-500
    • Lewis, S.1
  • 36
    • 85017634586 scopus 로고    scopus 로고
    • Available at: Accessed November 25.
    • 36 The World Factbook. Available at: https://www.cia.gov/library/publications/the-world-factbook/. Accessed November 25, 2016.
    • (2016)
  • 37
    • 85017616644 scopus 로고    scopus 로고
    • Available at: Accessed November 25.
    • 37 Health Insurance Coverage in the United States: 2015. Available at: http://census.gov/library/publications/2016/demo/p60-257.html. Accessed November 25, 2016.
    • (2016)
  • 38
    • 85017630992 scopus 로고    scopus 로고
    • Hospital Admission Risk Prediction (HARP) – a new tool for supporting providers and patients
    • Health Quality Ontario, Queen's Printer for Ontario.
    • 38 Hospital Admission Risk Prediction (HARP) – a new tool for supporting providers and patients, 2013, Health Quality Ontario, Queen's Printer for Ontario.
    • (2013)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.