메뉴 건너뛰기




Volumn 15, Issue 1, 2015, Pages

Electronic medical record-based multicondition models to predict the risk of 30 day readmission or death among adult medicine patients: Validation and comparison to existing models Clinical decision-making, knowledge support systems, and theory

Author keywords

All cause readmission; Electronic medical record; Predictive model; Readmission

Indexed keywords

ADULT; COMPARATIVE STUDY; ELECTRONIC HEALTH RECORD; HOSPITAL DISCHARGE; HOSPITAL READMISSION; HUMAN; MORTALITY; RISK ASSESSMENT; STATISTICS AND NUMERICAL DATA; TEXAS; THEORETICAL MODEL; VALIDATION STUDY;

EID: 84931075602     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/s12911-015-0162-6     Document Type: Article
Times cited : (59)

References (28)
  • 1
    • 63849134505 scopus 로고    scopus 로고
    • Rehospitalizations among patients in the medicare fee-for-service program
    • 1:CAS:528:DC%2BD1MXjvFGju7c%3D 19339721
    • Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the medicare fee-for-service program. New Engl J Med. 2009;360(14):1418-28.
    • (2009) New Engl J Med , vol.360 , Issue.14 , pp. 1418-1428
    • Jencks, S.F.1    Williams, M.V.2    Coleman, E.A.3
  • 2
    • 84872827399 scopus 로고    scopus 로고
    • Centers for Medicare and Medicaid Services Accessed on November 20, 2013
    • Centers for Medicare and Medicaid Services. Readmissions Reduction Program. Available at: http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html. Accessed on November 20, 2013.
    • Readmissions Reduction Program
  • 3
    • 33644653237 scopus 로고    scopus 로고
    • Isolation of health services research from practice and policy: The example of chronic heart failure management
    • 16551325
    • Seow H, Phillips CO, Rich MW, Spertus JA, Krumholz HM, Lynn J. Isolation of health services research from practice and policy: the example of chronic heart failure management. J Am Geriatr Soc. 2006;54(3):535-40.
    • (2006) J Am Geriatr Soc , vol.54 , Issue.3 , pp. 535-540
    • Seow, H.1    Phillips, C.O.2    Rich, M.W.3    Spertus, J.A.4    Krumholz, H.M.5    Lynn, J.6
  • 6
    • 77951240308 scopus 로고    scopus 로고
    • Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
    • van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ. 2010;182(6):551(557).
    • (2010) CMAJ , vol.182 , Issue.6 , pp. 551557
    • Van Walraven, C.1    Dhalla, I.A.2    Bell, C.3    Etchells, E.4    Stiell, I.G.5    Zarnke, K.6
  • 7
    • 78049334037 scopus 로고    scopus 로고
    • An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data
    • 20940649
    • Amarasingham R, Moore B, Tabak Y, Drazner MH, Clark CA, Zhang S, et al. An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care. 2010;48(11):981-8.
    • (2010) Med Care , vol.48 , Issue.11 , pp. 981-988
    • Amarasingham, R.1    Moore, B.2    Tabak, Y.3    Drazner, M.H.4    Clark, C.A.5    Zhang, S.6
  • 8
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission
    • 1:CAS:528:DC%2BC3MXhtlKgs73J 3603349 22009101
    • Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction models for hospital readmission. JAMA. 2011;306(15):1688-98.
    • (2011) JAMA , vol.306 , Issue.15 , pp. 1688-1698
    • Kansagara, D.1    Englander, H.2    Salanitro, A.3    Kagen, D.4    Theobald, C.5    Freeman, M.6
  • 9
    • 84876785353 scopus 로고    scopus 로고
    • Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model. JAMA
    • Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA. Intern Med. 2013;173(8):632-8.
    • (2013) Intern Med , vol.173 , Issue.8 , pp. 632-638
    • Donzé, J.1    Aujesky, D.2    Williams, D.3    Schnipper, J.L.4
  • 10
    • 84924043005 scopus 로고    scopus 로고
    • Predicting 30-day readmissions with preadmission electronic health record data
    • 25634089
    • Shadmi E, Flaks-Manov N, Hoshen M, Goldman O, Bitterman H, Balicer RD. Predicting 30-day readmissions with preadmission electronic health record data. Med Care. 2015;53(3):283-9.
    • (2015) Med Care , vol.53 , Issue.3 , pp. 283-289
    • Shadmi, E.1    Flaks-Manov, N.2    Hoshen, M.3    Goldman, O.4    Bitterman, H.5    Balicer, R.D.6
  • 11
    • 84889681291 scopus 로고    scopus 로고
    • Allocating Scarce Resources in Real-Time to Reduce Heart Failure Readmissions: A Prospective, Controlled Study
    • Amarasingham R, Patel P, Toto K, Nelson LL, Swanson TS, Moore BJ, et al. Allocating Scarce Resources in Real-Time to Reduce Heart Failure Readmissions: a Prospective, Controlled Study. BMJ Qual Saf. http://doi.org/10.1136/bmjqs-2013-001901.
    • BMJ Qual Saf.
    • Amarasingham, R.1    Patel, P.2    Toto, K.3    Nelson, L.L.4    Swanson, T.S.5    Moore, B.J.6
  • 13
    • 0033606791 scopus 로고    scopus 로고
    • Factors influencing knowledge of and adherence to self-care among patients with heart failure
    • 1:STN:280:DyaK1MzkslKmsQ%3D%3D 10421285
    • Ni H, Nauman D, Burgess D, Wise K, Crispell K, Hershberger RE. Factors influencing knowledge of and adherence to self-care among patients with heart failure. Arch Intern Med. 1999;159(14):1613-9.
    • (1999) Arch Intern Med , vol.159 , Issue.14 , pp. 1613-1619
    • Ni, H.1    Nauman, D.2    Burgess, D.3    Wise, K.4    Crispell, K.5    Hershberger, R.E.6
  • 14
    • 84929990343 scopus 로고    scopus 로고
    • Roles of nonclinical and clinical data in prediction of 30-day rehospitalization or death among heart failure patients
    • 25724302
    • Huynh QL, Saito M, Blizzard CL, Eskandari M, Johnson B, Adabi G, et al. Roles of nonclinical and clinical data in prediction of 30-day rehospitalization or death among heart failure patients. J Card Fail. 2015;21(5):374-81.
    • (2015) J Card Fail , vol.21 , Issue.5 , pp. 374-381
    • Huynh, Q.L.1    Saito, M.2    Blizzard, C.L.3    Eskandari, M.4    Johnson, B.5    Adabi, G.6
  • 15
    • 8844272541 scopus 로고    scopus 로고
    • A systematic review and meta-analysis of studies comparing readmission rates and mortality rates in patients with heart failure
    • 15557409
    • Gwadry-Sridhar F, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta-analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004;164(21):2315-20.
    • (2004) Arch Intern Med , vol.164 , Issue.21 , pp. 2315-2320
    • Gwadry-Sridhar, F.1    Flintoft, V.2    Lee, D.S.3    Lee, H.4    Guyatt, G.H.5
  • 16
    • 1542610656 scopus 로고    scopus 로고
    • Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure
    • 1:CAS:528:DC%2BD2cXitlKntrk%3D 15026403
    • Phillips CO, Wright SM, Kern DE, Singa RM, Shepperd S, Rubin HR. Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure. JAMA. 2004;291(11):1358-67.
    • (2004) JAMA , vol.291 , Issue.11 , pp. 1358-1367
    • Phillips, C.O.1    Wright, S.M.2    Kern, D.E.3    Singa, R.M.4    Shepperd, S.5    Rubin, H.R.6
  • 17
    • 54049122494 scopus 로고    scopus 로고
    • An administrative claims measure suitable for profiling hospital performance on the basis of 30-Day all-cause readmission rates among patients with heart failure
    • 20031785
    • Keenan P, Normand S, Lin Z, Drye EE, Bhat KR, Ross JS, et al. An administrative claims measure suitable for profiling hospital performance on the basis of 30-Day all-cause readmission rates among patients with heart failure. Circ Cardiovasc Qual Outcomes. 2008;1:29-37.
    • (2008) Circ Cardiovasc Qual Outcomes , vol.1 , pp. 29-37
    • Keenan, P.1    Normand, S.2    Lin, Z.3    Drye, E.E.4    Bhat, K.R.5    Ross, J.S.6
  • 18
    • 84884358562 scopus 로고    scopus 로고
    • Post-discharge environment following heart failure hospitalization: Expanding the view of hospital readmission
    • 3647271 23580604
    • Hersh AM, Masoudi FA, Allen LA. Post-discharge environment following heart failure hospitalization: expanding the view of hospital readmission. J Am Heart Assoc. 2013;2:e000116.
    • (2013) J Am Heart Assoc , vol.2 , pp. 000116
    • Hersh, A.M.1    Masoudi, F.A.2    Allen, L.A.3
  • 19
    • 51749113157 scopus 로고    scopus 로고
    • Post-discharge environmental and socioeconomic factors and the likelihood of early hospital readmission among community-dwelling medicare beneficiaries
    • 18728299
    • Arbaje AI, Wolff JL, Yu Q, Powe NR, Anderson GF, Boult C. Post-discharge environmental and socioeconomic factors and the likelihood of early hospital readmission among community-dwelling medicare beneficiaries. Gerontologist. 2008;48:495-504.
    • (2008) Gerontologist , vol.48 , pp. 495-504
    • Arbaje, A.I.1    Wolff, J.L.2    Yu, Q.3    Powe, N.R.4    Anderson, G.F.5    Boult, C.6
  • 20
  • 21
    • 0021712941 scopus 로고
    • Empiric comparison of multivariate analytic techniques: Advantages and disadvantages of recursive partitioning analysis
    • 1:STN:280:DyaL2M%2FlsFersA%3D%3D 6501544
    • Cook EF, Goldman L. Empiric comparison of multivariate analytic techniques: advantages and disadvantages of recursive partitioning analysis. J Chronic Dis. 1984;37(9-10):721-31.
    • (1984) J Chronic Dis , vol.37 , Issue.9-10 , pp. 721-731
    • Cook, E.F.1    Goldman, L.2
  • 22
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • 8668867
    • Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361-87.
    • (1996) Stat Med , vol.15 , Issue.4 , pp. 361-387
    • Harrell, Jr.F.E.1    Lee, K.L.2    Mark, D.B.3
  • 23
    • 34548258778 scopus 로고    scopus 로고
    • Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited
    • 17568333
    • Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med. 2007;35(9):2052-6.
    • (2007) Crit Care Med , vol.35 , Issue.9 , pp. 2052-2056
    • Kramer, A.A.1    Zimmerman, J.E.2
  • 24
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • 17569110
    • Pencina MJ, D' Agostino RB, D'Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157-72.
    • (2008) Stat Med , vol.27 , pp. 157-172
    • Pencina, M.J.1    Agostino R.B.D.'.2    D'Agostino, R.B.3    Vasan, R.S.4
  • 25
    • 0025031812 scopus 로고
    • No adjustments are needed for multiple comparisons
    • 1:STN:280:DyaK3M7otlShtA%3D%3D
    • Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiol. 1990;1:43-6.
    • (1990) Epidemiol , vol.1 , pp. 43-46
    • Rothman, K.J.1
  • 26
    • 84867800882 scopus 로고    scopus 로고
    • Predicting readmissions: Poor performance of the LACE index in an Older UK population
    • 22644078
    • Cotter PE, Bhalla VK, Wallis SJ, Biram RW. Predicting readmissions: poor performance of the LACE index in an Older UK population. Age Ageing. 2012;41(6):784-9.
    • (2012) Age Ageing , vol.41 , Issue.6 , pp. 784-789
    • Cotter, P.E.1    Bhalla, V.K.2    Wallis, S.J.3    Biram, R.W.4
  • 27
    • 84892583291 scopus 로고    scopus 로고
    • Decreasing Readmissions: It Can Be Done but One Size Does Not Fit All
    • McAlister FA. Decreasing Readmissions: It Can Be Done But One Size Does Not Fit All. BMJ Qual Saf. http://dx.doi.org/10.1136/bmjqs-2013-002407
    • BMJ Qual Saf.
    • McAlister, F.A.1
  • 28
    • 77953638071 scopus 로고    scopus 로고
    • Payment policy by measurement of health care spending and outcomes
    • 1:CAS:528:DC%2BC3cXnslKju7o%3D 20551412
    • Huesch MD. Payment policy by measurement of health care spending and outcomes. JAMA. 2010;303:2405-6.
    • (2010) JAMA , vol.303 , pp. 2405-2406
    • Huesch, M.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.