-
1
-
-
0025445384
-
Computing accurate eigensystems of scaled diagonally dominant matrices
-
Barlow J. and Demmel J. (1990), ‘Computing accurate eigensystems of scaled diagonally dominant matrices’, SIAM J. Numer. Anal. 27, 762–91.
-
(1990)
SIAM J. Numer. Anal.
, vol.27
, pp. 762-791
-
-
Barlow, J.1
Demmel, J.2
-
2
-
-
4644369885
-
Norms and exclusion theorems
-
Bauer F. and Fike C. (1960), ‘Norms and exclusion theorems’, Numer. Math. 2, 137–41.
-
(1960)
Numer. Math.
, vol.2
, pp. 137-141
-
-
Bauer, F.1
Fike, C.2
-
4
-
-
84946063031
-
An improved algorithm for computing the singular value decomposition
-
Chan T. (1982), ‘An improved algorithm for computing the singular value decomposition’, ACM Trans. Math. Software 8, 72–83.
-
(1982)
ACM Trans. Math. Software
, vol.8
, pp. 72-83
-
-
Chan, T.1
-
5
-
-
21844490820
-
Analysis of a QR algorithm for computing singular values
-
Chandrasekaran S. and Ipsen I. (1995), ‘Analysis of a QR algorithm for computing singular values’, SIAM J. Matrix Anal. Appl. 16, 520–35.
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, pp. 520-535
-
-
Chandrasekaran, S.1
Ipsen, I.2
-
6
-
-
0026238244
-
The bidiagonal singular value decomposition and Hamiltonian mechanics
-
Deift P., Demmel J., Li L. and Tomei C. (1991), ‘The bidiagonal singular value decomposition and Hamiltonian mechanics’, SIAM J. Numer. Anal. 28, 1463–1516.
-
(1991)
SIAM J. Numer. Anal.
, vol.28
, pp. 1463-1516
-
-
Deift, P.1
Demmel, J.2
Li, L.3
Tomei, C.4
-
8
-
-
38249003695
-
On computing accurate singular values and eigenvalues of matrices with acyclic graphs
-
Demmel J. and Gragg W. (1993), ‘On computing accurate singular values and eigenvalues of matrices with acyclic graphs’, Linear Algebra Appl. 185, 203–17.
-
(1993)
Linear Algebra Appl
, vol.185
, pp. 203-217
-
-
Demmel, J.1
Gragg, W.2
-
9
-
-
0001192187
-
Accurate singular values ofbidiagonal matrices
-
Demmel J. and Kahan W. (1990), ‘Accurate singular values ofbidiagonal matrices’, SIAM J. Sci. Statist. Comput. 11, 873–912.
-
(1990)
SIAM J. Sci. Statist. Comput.
, vol.11
, pp. 873-912
-
-
Demmel, J.1
Kahan, W.2
-
10
-
-
21144468781
-
Jacobi's method is more accurate than QR
-
Demmel J. and Veselić K. (1992), ‘Jacobi's method is more accurate than QR’ SIAM J. Matrix Anal. Appl. 13, 1204–45.
-
(1992)
SIAM J. Matrix Anal. Appl.
, vol.13
, pp. 1204-1245
-
-
Demmel, J.1
Veselić, K.2
-
11
-
-
0009086357
-
-
Technical report, Computer Science Division, University of California, Berkeley, CA.
-
Demmel J., Gu M., Eisenstat S., Slapničar I., Veselić K. and Drmač Z. (1997), Computing the singular value decomposition with high relative accuracy, Technical report, Computer Science Division, University of California, Berkeley, CA.
-
(1997)
Computing the singular value decomposition with high relative accuracy
-
-
Demmel, J.1
Gu, M.2
Eisenstat, S.3
Slapničar, I.4
Veselić, K.5
Drmač, Z.6
-
14
-
-
0008486996
-
Results on the relative perturbation of the singular values of a matrix
-
Di Lena G., Peluso R. and Piazza G. (1993), ‘Results on the relative perturbation of the singular values of a matrix’, BIT 33, 647–53.
-
(1993)
BIT
, vol.33
, pp. 647-653
-
-
Di Lena, G.1
Peluso, R.2
Piazza, G.3
-
16
-
-
0030514941
-
On relative residual bounds for the eigenvalues of a Hermitian matrix
-
(a)
-
Drmač Z. (1996a), ‘On relative residual bounds for the eigenvalues of a Hermitian matrix’, Linear Algebra Appl. 244, 155–64.
-
(1996)
Linear Algebra Appl
, vol.244
, pp. 155-164
-
-
Drmač, Z.1
-
17
-
-
0030514248
-
On the condition behaviour in the Jacobi method
-
(b)
-
Drmač Z. (1996b), ‘On the condition behaviour in the Jacobi method’, SIAM J. Matrix Anal. Appl. 17, 509–14.
-
(1996)
SIAM J. Matrix Anal. Appl.
, vol.17
, pp. 509-514
-
-
Drmač, Z.1
-
18
-
-
0031542318
-
Relative residual bounds for the eigenvalues of a Hermitian semidefinite matrix
-
Drmač Z. and Hari V. (1997), ‘Relative residual bounds for the eigenvalues of a Hermitian semidefinite matrix’, SIAM J. Matrix Anal. Appl. 18, 21–9.
-
(1997)
SIAM J. Matrix Anal. Appl.
, vol.18
, pp. 21-29
-
-
Drmač, Z.1
Hari, V.2
-
19
-
-
0009285515
-
Relative perturbation bounds for eigenspaces and singular vector subspaces
-
SIAM, Philadelphia
-
Eisenstat S. and Ipsen I. (1994), Relative perturbation bounds for eigenspaces and singular vector subspaces, in Applied Linear Algebra, SIAM, Philadelphia, pp. 62–5.
-
(1994)
Applied Linear Algebra
, pp. 62-65
-
-
Eisenstat, S.1
Ipsen, I.2
-
20
-
-
0001371240
-
Relative perturbation techniques for singular value problems
-
Eisenstat S. and Ipsen I. (1995), ‘Relative perturbation techniques for singular value problems’, SIAM J. Numer. Anal. 32, 1972–88.
-
(1995)
SIAM J. Numer. Anal.
, vol.32
, pp. 1972-1988
-
-
Eisenstat, S.1
Ipsen, I.2
-
21
-
-
0040604566
-
-
Technical Report CRSC-TR96-6, Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University.
-
Eisenstat S. and Ipsen I. (1996), Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices, Technical Report CRSC-TR96-6, Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University.
-
(1996)
Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices
-
-
Eisenstat, S.1
Ipsen, I.2
-
22
-
-
0039818232
-
-
Technical Report CRSC-TR97-16, Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University. Under review for SIAM J. Matrix Anal. Appl.
-
Eisenstat S. and Ipsen I. (1997), Three absolute perturbation bounds for matrix eigenvalues imply relative bounds, Technical Report CRSC-TR97-16, Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University. Under review for SIAM J. Matrix Anal. Appl.
-
(1997)
Three absolute perturbation bounds for matrix eigenvalues imply relative bounds
-
-
Eisenstat, S.1
Ipsen, I.2
-
23
-
-
21844489875
-
Singular values, doubly stochastic matrices, and applications
-
Eisner L. and Friedland S. (1995), ‘Singular values, doubly stochastic matrices, and applications’, Linear Algebra Appl. 220, 161–9.
-
(1995)
Linear Algebra Appl
, vol.220
, pp. 161-169
-
-
Eisner, L.1
Friedland, S.2
-
24
-
-
21344496407
-
Accurate singular values and differential qd algorithms
-
Fernando K. and Parlett B. (1994), ‘Accurate singular values and differential qd algorithms’, Numer. Math. 67, 191–229.
-
(1994)
Numer. Math.
, vol.67
, pp. 191-229
-
-
Fernando, K.1
Parlett, B.2
-
26
-
-
0031519511
-
On scaled almost diagonal Hermitian matrix pairs
-
Hari V. and Drmač Z. (1997), ‘On scaled almost diagonal Hermitian matrix pairs’, SIAM J. Matrix Anal. Appl. 18, 1000–1012.
-
(1997)
SIAM J. Matrix Anal. Appl.
, vol.18
, pp. 1000-1012
-
-
Hari, V.1
Drmač, Z.2
-
29
-
-
0004222768
-
-
Technical Report CS41, Computer Science Department, Stanford University. Revised June 1968.
-
Kahan W. (1966), Accurate eigenvalues of a symmetric tri–diagonal matrix, Technical Report CS41, Computer Science Department, Stanford University. Revised June 1968.
-
(1966)
Accurate eigenvalues of a symmetric tri–diagonal matrix
-
-
Kahan, W.1
-
30
-
-
0042251278
-
-
Technical report, Department of Mathematics, College of William and Mary, Williamsburg, VA.
-
Li C. and Mathias R. (1997), On the Lidskii–Mirsky–Wielandt theorem, Technical report, Department of Mathematics, College of William and Mary, Williamsburg, VA.
-
(1997)
On the Lidskii–Mirsky–Wielandt theorem
-
-
Li, C.1
Mathias, R.2
-
31
-
-
70449663651
-
-
(a), LAPACK working note 84, Computer Science Department, University of Tennessee, Knoxville. Revised May 1997
-
Li R. (1994a), Relative perturbation theory: (I) eigenvalue variations, LAPACK working note 84, Computer Science Department, University of Tennessee, Knoxville. Revised May 1997.
-
(1994)
Relative perturbation theory: (I) eigenvalue variations
-
-
Li, R.1
-
32
-
-
70449663651
-
-
(b), LAPACK working note 85, Computer Science Department, University of Tennessee, Knoxville. Revised May 1997
-
Li R. (1994b), Relative perturbation theory: (II) eigenspace variations, LAPACK working note 85, Computer Science Department, University of Tennessee, Knoxville. Revised May 1997.
-
(1994)
Relative perturbation theory: (II) eigenspace variations
-
-
Li, R.1
-
33
-
-
0039419182
-
Relative perturbation theory: (III) more bounds on eigenvalue variation
-
Li R. (1997), ‘Relative perturbation theory: (III) more bounds on eigenvalue variation’, Linear Algebra Appl. 266, 337–45.
-
(1997)
Linear Algebra Appl
, vol.266
, pp. 337-345
-
-
Li, R.1
-
34
-
-
34250967722
-
Über monotone Matrix Funktionen
-
Löwner K. (1934), ‘Über monotone Matrix Funktionen’, Math. Z. 38, 177–216.
-
(1934)
Math. Z.
, vol.38
, pp. 177-216
-
-
Löwner, K.1
-
35
-
-
33746243740
-
Scaled almost diagonal matrices with multiple singular values
-
Matejaš J. and Hari V. (1998), ‘Scaled almost diagonal matrices with multiple singular values’, Z. Angew. Math. Mech. 78, 121–31.
-
(1998)
Z. Angew. Math. Mech.
, vol.78
, pp. 121-131
-
-
Matejaš, J.1
Hari, V.2
-
36
-
-
0042375241
-
Accurate eigensystem computations by Jacobi methods
-
Mathias R. (1995), ‘Accurate eigensystem computations by Jacobi methods’, SIAM J. Matrix Anal. Appl. 16, 977–1003.
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, pp. 977-1003
-
-
Mathias, R.1
-
37
-
-
0030518594
-
Fast accurate eigenvalue methods for graded positive–definite matrices
-
Mathias R. (1996), ‘Fast accurate eigenvalue methods for graded positive–definite matrices’, Numer. Math. 74, 85–103.
-
(1996)
Numer. Math.
, vol.74
, pp. 85-103
-
-
Mathias, R.1
-
38
-
-
0031520185
-
A bound for matrix square root with application to eigenvector perturbation
-
(a)
-
Mathias R. (1997a), ‘A bound for matrix square root with application to eigenvector perturbation’, SIAM J. Matrix Anal. Appl. 18, 861–7.
-
(1997)
SIAM J. Matrix Anal. Appl.
, vol.18
, pp. 861-867
-
-
Mathias, R.1
-
39
-
-
0031493430
-
Spectral perturbation bounds for positive definite matrices
-
(b)
-
Mathias R. (1997b), ‘Spectral perturbation bounds for positive definite matrices’, SIAM J. Matrix Anal. Appl. 18, 959–80.
-
(1997)
SIAM J. Matrix Anal. Appl.
, vol.18
, pp. 959-980
-
-
Mathias, R.1
-
40
-
-
0038876113
-
A block QR algorithm and the singular value decomposition
-
Mathias R. and Stewart G. (1993), ‘A block QR algorithm and the singular value decomposition’, Linear Algebra Appl. 182, 91–100.
-
(1993)
Linear Algebra Appl
, vol.182
, pp. 91-100
-
-
Mathias, R.1
Stewart, G.2
-
42
-
-
0007172459
-
A quantitative formulation of Sylvester's law of inertia
-
Ostrowski A. (1959), ‘A quantitative formulation of Sylvester's law of inertia’, Proc. Nat. Acad. Sci. 45, 740–4.
-
(1959)
Proc. Nat. Acad. Sci.
, vol.45
, pp. 740-744
-
-
Ostrowski, A.1
-
44
-
-
0008832105
-
The new qd algorithms
-
Cambridge University Press
-
Parlett B. (1995), ‘The new qd algorithms’, in Acta Numerica, Vol. 4, Cambridge University Press, pp. 459–91.
-
(1995)
Acta Numerica
, vol.4
, pp. 459-491
-
-
Parlett, B.1
-
47
-
-
0009085322
-
Numerical conditions of stiffness matrix formulations for frame structures
-
AFFDL–TR-68-150, Wright-Patterson Air Force Base, Ohio
-
Rosanoff R., Glouderman J. and Levy S. (1968), Numerical conditions of stiffness matrix formulations for frame structures, in Proceedings of the Conference on Matrix Methods in Structural Mechanics, AFFDL–TR-68-150, Wright-Patterson Air Force Base, Ohio, pp. 1029–60.
-
(1968)
Proceedings of the Conference on Matrix Methods in Structural Mechanics
, pp. 1029-1060
-
-
Rosanoff, R.1
Glouderman, J.2
Levy, S.3
-
49
-
-
85011438031
-
Perturbations of the eigenprojections of a factorised Hermitian matrix
-
Slapničar I. and Veselić K. (1995), ‘Perturbations of the eigenprojections of a factorised Hermitian matrix’, Linear Algebra Appl. 218, 273–80.
-
(1995)
Linear Algebra Appl
, vol.218
, pp. 273-280
-
-
Slapničar, I.1
Veselić, K.2
-
51
-
-
34250492649
-
Condition, equilibration, and pivoting in linear algebraic systems
-
van der Sluis A. (1969), ‘Condition, equilibration, and pivoting in linear algebraic systems’, Numer. Math. 15, 74–86.
-
(1969)
Numer. Math.
, vol.15
, pp. 74-86
-
-
van der Sluis, A.1
-
52
-
-
0001077325
-
A note on a one-sided Jacobi algorithm
-
Veselić K. and Hari V. (1989), A note on a one-sided Jacobi algorithm, Numer. Math. 56, 627–33.
-
(1989)
Numer. Math.
, vol.56
, pp. 627-633
-
-
Veselić, K.1
Hari, V.2
-
53
-
-
21344486120
-
Floating–point perturbations of Hermitian matrices
-
Veselić K. and Slapničar I. (1993), ‘Floating–point perturbations of Hermitian matrices’, Linear Algebra Appl. 195, 81–116.
-
(1993)
Linear Algebra Appl
, vol.195
, pp. 81-116
-
-
Veselić, K.1
Slapničar, I.2
|