메뉴 건너뛰기




Volumn 18, Issue 4, 1997, Pages 861-867

A bound for the matrix square root with application to eigenvector perturbation

Author keywords

Eigenvector perturbation; Hadamard product; Matrix square root

Indexed keywords


EID: 0031520185     PISSN: 08954798     EISSN: None     Source Type: Journal    
DOI: 10.1137/S5089547989529577     Document Type: Article
Times cited : (9)

References (7)
  • 1
    • 84963022844 scopus 로고
    • Lipschitz continuity of functions of operators in the Schatten classes
    • E. B. DAVIES, Lipschitz continuity of functions of operators in the Schatten classes, J. London Math. Soc., 37 (1988), pp. 148-157.
    • (1988) J. London Math. Soc. , vol.37 , pp. 148-157
    • Davies, E.B.1
  • 2
    • 0041037648 scopus 로고    scopus 로고
    • personal communication
    • S. EISENSTAT, personal communication, 1996.
    • (1996)
    • Eisenstat, S.1
  • 3
    • 0001371240 scopus 로고
    • Relative perturbation techniques for singular value problems
    • S. C. EISENSTAT AND I. C. F. IPSEN, Relative perturbation techniques for singular value problems, SIAM J. Numer. Anal., 32 (1995), pp. 1972-1988.
    • (1995) SIAM J. Numer. Anal. , vol.32 , pp. 1972-1988
    • Eisenstat, S.C.1    Ipsen, I.C.F.2
  • 5
    • 0041037635 scopus 로고
    • The Hadamard operator norm of a circulant and applications
    • R. MATHIAS, The Hadamard operator norm of a circulant and applications, SIAM J. Matrix Anal. Appl., 14 (1992), pp. 1152-1167.
    • (1992) SIAM J. Matrix Anal. Appl. , vol.14 , pp. 1152-1167
    • Mathias, R.1
  • 6
    • 0037770290 scopus 로고
    • Matrix completions, Hadamard products and norms
    • R. MATHIAS, Matrix completions, Hadamard products and norms, Proc. Amer. Math. Soc., 117 (1993), pp. 905-918.
    • (1993) Proc. Amer. Math. Soc. , vol.117 , pp. 905-918
    • Mathias, R.1
  • 7
    • 85033124577 scopus 로고    scopus 로고
    • A relative perturbation bound for positive definite matrices
    • to appear
    • R. MATHIAS AND K. VESELIĆ, A relative perturbation bound for positive definite matrices, Linear Algebra Appl., to appear.
    • Linear Algebra Appl.
    • Mathias, R.1    Veselić, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.