-
1
-
-
84958279532
-
Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes
-
[1] Ortiz, G.F., López, M.C., Li, Y., McDonald, M.J., Cabello, M., Tirado, J.L., Yang, Y., Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes. Sci. Rep., 6, 2016, 20656, 10.1038/srep20656.
-
(2016)
Sci. Rep.
, vol.6
, pp. 20656
-
-
Ortiz, G.F.1
López, M.C.2
Li, Y.3
McDonald, M.J.4
Cabello, M.5
Tirado, J.L.6
Yang, Y.7
-
2
-
-
0042329974
-
Electrochemical performance and cyclability of LiFe0.5Mn1.5O4 as a 5 V cathode material for lithium batteries
-
[2] Eftekhari, A., Electrochemical performance and cyclability of LiFe0.5Mn1.5O4 as a 5 V cathode material for lithium batteries. J. Power Sources 124 (2003), 182–190, 10.1016/S0378-7753(03)00602-5.
-
(2003)
J. Power Sources
, vol.124
, pp. 182-190
-
-
Eftekhari, A.1
-
3
-
-
84914818936
-
Carbon nanotube-assisted electrodeposition. Part I: battery performance of manganese oxide films electrodeposited at low current densities
-
[3] Eftekhari, A., Molaei, F., Carbon nanotube-assisted electrodeposition. Part I: battery performance of manganese oxide films electrodeposited at low current densities. J. Power Sources 274 (2015), 1306–1314, 10.1016/j.jpowsour.2013.10.136.
-
(2015)
J. Power Sources
, vol.274
, pp. 1306-1314
-
-
Eftekhari, A.1
Molaei, F.2
-
4
-
-
84914819777
-
Carbon nanotube-assisted electrodeposition. Part II: superior pseudo-capacitive behavior of manganese oxide film electrodeposited at high current densities
-
[4] Eftekhari, A., Molaei, F., Carbon nanotube-assisted electrodeposition. Part II: superior pseudo-capacitive behavior of manganese oxide film electrodeposited at high current densities. J. Power Sources 274 (2015), 1315–1321, 10.1016/j.jpowsour.2013.10.144.
-
(2015)
J. Power Sources
, vol.274
, pp. 1315-1321
-
-
Eftekhari, A.1
Molaei, F.2
-
5
-
-
84970968780
-
Iron based dual-metal oxides on graphene for lithium-ion batteries anode: effects of composition and morphology
-
[5] Wu, Y., Zhan, L., Huang, K., Wang, H., Yu, H., Wang, S., Peng, F., Lai, C., Iron based dual-metal oxides on graphene for lithium-ion batteries anode: effects of composition and morphology. J. Alloy. Compd. 684 (2016), 47–54, 10.1016/j.jallcom.2016.05.151.
-
(2016)
J. Alloy. Compd.
, vol.684
, pp. 47-54
-
-
Wu, Y.1
Zhan, L.2
Huang, K.3
Wang, H.4
Yu, H.5
Wang, S.6
Peng, F.7
Lai, C.8
-
6
-
-
84978880208
-
Oxygen-deficient Zn2Ti3O8−X nanoparticle as anode material for lithium ion batteries
-
[6] Wang, J., Zhang, J., Zhang, Y., Guo, J., Zhang, J., Oxygen-deficient Zn2Ti3O8−X nanoparticle as anode material for lithium ion batteries. J. Alloy. Compd. 688 (2016), 392–398, 10.1016/j.jallcom.2016.07.059.
-
(2016)
J. Alloy. Compd.
, vol.688
, pp. 392-398
-
-
Wang, J.1
Zhang, J.2
Zhang, Y.3
Guo, J.4
Zhang, J.5
-
7
-
-
84975113019
-
Multichannel hollow structure for improved electrochemical performance of TiO2/carbon composite nanofibers as anodes for lithium ion batteries
-
[7] Zúñiga, L., Agubra, V., Flores, D., Campos, H., Villareal, J., Alcoutlabi, M., Multichannel hollow structure for improved electrochemical performance of TiO2/carbon composite nanofibers as anodes for lithium ion batteries. J. Alloy. Compd. 686 (2016), 733–743, 10.1016/j.jallcom.2016.06.089.
-
(2016)
J. Alloy. Compd.
, vol.686
, pp. 733-743
-
-
Zúñiga, L.1
Agubra, V.2
Flores, D.3
Campos, H.4
Villareal, J.5
Alcoutlabi, M.6
-
8
-
-
84979284436
-
Multiwalled carbon nanotube webs welded with Si nanoparticles as high-performance anode for lithium-ion batteries
-
[8] Zhang, W., Chen, X., Yong, T., Xu, N., Guan, R., Yue, L., Multiwalled carbon nanotube webs welded with Si nanoparticles as high-performance anode for lithium-ion batteries. J. Alloy. Compd. 688 (2016), 216–224, 10.1016/j.jallcom.2016.07.172.
-
(2016)
J. Alloy. Compd.
, vol.688
, pp. 216-224
-
-
Zhang, W.1
Chen, X.2
Yong, T.3
Xu, N.4
Guan, R.5
Yue, L.6
-
9
-
-
84993997492
-
Preparation and performance of Li4C10H4O8 with multi-carboxyl groups as anode material for lithium-ion batteries
-
[9] Yang, X., Liu, Z., Chen, X., Wang, W., Chen, X., Yuan, Z., Zhou, H., Zeng, R., Luo, Y., Preparation and performance of Li4C10H4O8 with multi-carboxyl groups as anode material for lithium-ion batteries. J. Electroanal. Chem. 782 (2016), 202–206, 10.1016/j.jelechem.2016.10.001.
-
(2016)
J. Electroanal. Chem.
, vol.782
, pp. 202-206
-
-
Yang, X.1
Liu, Z.2
Chen, X.3
Wang, W.4
Chen, X.5
Yuan, Z.6
Zhou, H.7
Zeng, R.8
Luo, Y.9
-
10
-
-
84903309474
-
Application of graphite−solid electrolyte composite anode in all-solid-state lithium secondary battery with Li2S positive electrode
-
[10] Takeuchi, T., Kageyama, H., Nakanishi, K., Ohta, T., Sakuda, A., Sakai, T., Kobayashi, H., Sakaebe, H., Tatsumi, K., Ogumi, Z., Application of graphite−solid electrolyte composite anode in all-solid-state lithium secondary battery with Li2S positive electrode. Solid State Ion. 262 (2014), 138–142, 10.1016/j.ssi.2013.09.046.
-
(2014)
Solid State Ion.
, vol.262
, pp. 138-142
-
-
Takeuchi, T.1
Kageyama, H.2
Nakanishi, K.3
Ohta, T.4
Sakuda, A.5
Sakai, T.6
Kobayashi, H.7
Sakaebe, H.8
Tatsumi, K.9
Ogumi, Z.10
-
11
-
-
84904806392
-
Performance improvement of Li ion battery with non-flammable TMP mixed electrolyte by optimization of lithium salt concentration and SEI preformation technique on graphite anode
-
[11] Matsumoto, K., Nakahara, K., Inoue, K., Iwasa, S., Nakano, K., Kaneko, S., Ishikawa, H., Utsugi, K., Yuge, R., Performance improvement of Li ion battery with non-flammable TMP mixed electrolyte by optimization of lithium salt concentration and SEI preformation technique on graphite anode. J. Electrochem. Soc., 161, 2014, A831, 10.1149/2.091405jes.
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A831
-
-
Matsumoto, K.1
Nakahara, K.2
Inoue, K.3
Iwasa, S.4
Nakano, K.5
Kaneko, S.6
Ishikawa, H.7
Utsugi, K.8
Yuge, R.9
-
12
-
-
84920609335
-
Preparation and characterization of graphite anode for lithium ion batteries
-
[12] Humana, R.M., Ortiz, M.G., Thomas, J.E., Real, S.G., Sedlaříková, M., Vondrák, J., Visintin, A., Preparation and characterization of graphite anode for lithium ion batteries. ECS Trans. 63 (2014), 91–97, 10.1149/06301.0091ecst.
-
(2014)
ECS Trans.
, vol.63
, pp. 91-97
-
-
Humana, R.M.1
Ortiz, M.G.2
Thomas, J.E.3
Real, S.G.4
Sedlaříková, M.5
Vondrák, J.6
Visintin, A.7
-
13
-
-
84947291255
-
A contrastive study of three graphite anodes in the piperidinium based electrolytes for lithium ion batteries
-
[13] Jiang, X., Wang, C., Gao, K., Niu, L., Li, S., A contrastive study of three graphite anodes in the piperidinium based electrolytes for lithium ion batteries. Mater. Res. Bull. 74 (2016), 408–413, 10.1016/j.materresbull.2015.11.009.
-
(2016)
Mater. Res. Bull.
, vol.74
, pp. 408-413
-
-
Jiang, X.1
Wang, C.2
Gao, K.3
Niu, L.4
Li, S.5
-
14
-
-
85011343613
-
Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery
-
[14] Guo, D., Zeng, X., Deng, F., ZOU, J., Sheng, H., Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery. Carbon, 98, 2016, 734, 10.1016/j.carbon.2015.10.030.
-
(2016)
Carbon
, vol.98
, pp. 734
-
-
Guo, D.1
Zeng, X.2
Deng, F.3
ZOU, J.4
Sheng, H.5
-
15
-
-
84947263691
-
A long-life nano-silicon Anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling
-
[15] Sun, W., Hu, R., Zhang, H., Wang, Y., Yang, L., Liu, J., Zhu, M., A long-life nano-silicon Anode for lithium ion batteries: supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling. Electrochim. Acta 187 (2016), 1–10, 10.1016/j.electacta.2015.11.020.
-
(2016)
Electrochim. Acta
, vol.187
, pp. 1-10
-
-
Sun, W.1
Hu, R.2
Zhang, H.3
Wang, Y.4
Yang, L.5
Liu, J.6
Zhu, M.7
-
16
-
-
84947788158
-
Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance
-
[16] Yan, Y., Ben, L., Zhan, Y., Huang, X., Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim. Acta 187 (2016), 186–192, 10.1016/j.electacta.2015.11.015.
-
(2016)
Electrochim. Acta
, vol.187
, pp. 186-192
-
-
Yan, Y.1
Ben, L.2
Zhan, Y.3
Huang, X.4
-
17
-
-
84961626140
-
Improved compatibility of graphite anode for lithium ion battery using sulfuric esters
-
[17] Ding, Z., Li, X., Wei, T., Yin, Z., Li, X., Improved compatibility of graphite anode for lithium ion battery using sulfuric esters. Electrochim. Acta 196 (2016), 622–628, 10.1016/j.electacta.2016.02.205.
-
(2016)
Electrochim. Acta
, vol.196
, pp. 622-628
-
-
Ding, Z.1
Li, X.2
Wei, T.3
Yin, Z.4
Li, X.5
-
18
-
-
84955242124
-
Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions
-
[18] Burow, D., Sergeeva, K., Calles, S., Schorb, K., Börger, A., Roth, C., Heitjans, P., Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions. J. Power Sources 307 (2016), 806–814, 10.1016/j.jpowsour.2016.01.033.
-
(2016)
J. Power Sources
, vol.307
, pp. 806-814
-
-
Burow, D.1
Sergeeva, K.2
Calles, S.3
Schorb, K.4
Börger, A.5
Roth, C.6
Heitjans, P.7
-
19
-
-
84976358820
-
Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries
-
[19] Chen, M., Wang, Z., Wang, A., Li, W., Liu, X., Fu, L., Huang, W., Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries. J. Mater. Chem. A 4 (2016), 9865–9872, 10.1039/c6ta02285e.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 9865-9872
-
-
Chen, M.1
Wang, Z.2
Wang, A.3
Li, W.4
Liu, X.5
Fu, L.6
Huang, W.7
-
20
-
-
84992311276
-
Revisiting surface modification of graphite: dual-layer coating for high-performance lithium battery anode materials
-
[20] Song, G., Ryu, J., Ko, S., Bang, B.M., Choi, S., Shin, M., Lee, S., Park, S., Revisiting surface modification of graphite: dual-layer coating for high-performance lithium battery anode materials. Chem. Asian J. 11 (2016), 1711–1717, 10.1002/asia.201600249.
-
(2016)
Chem. Asian J.
, vol.11
, pp. 1711-1717
-
-
Song, G.1
Ryu, J.2
Ko, S.3
Bang, B.M.4
Choi, S.5
Shin, M.6
Lee, S.7
Park, S.8
-
21
-
-
84987718574
-
Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition
-
[21] Winkler, V., Hanemann, T., Bruns, M., Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition. Surf. Interface Anal., 2016, 10.1002/sia.6139.
-
(2016)
Surf. Interface Anal.
-
-
Winkler, V.1
Hanemann, T.2
Bruns, M.3
-
22
-
-
84988514156
-
LBM prediction of effective electric and species transport properties of lithium-ion battery graphite anode
-
[22] He, S., Habte, B.T., Jiang, F., LBM prediction of effective electric and species transport properties of lithium-ion battery graphite anode. Solid State Ion. 296 (2016), 146–153, 10.1016/j.ssi.2016.09.021.
-
(2016)
Solid State Ion.
, vol.296
, pp. 146-153
-
-
He, S.1
Habte, B.T.2
Jiang, F.3
-
23
-
-
84984816420
-
Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries
-
[23] Elizabeth, I., Singh, B.P., Trikha, S., Gopukumar, S., Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. J. Power Sources 329 (2016), 412–421, 10.1016/j.jpowsour.2016.08.106.
-
(2016)
J. Power Sources
, vol.329
, pp. 412-421
-
-
Elizabeth, I.1
Singh, B.P.2
Trikha, S.3
Gopukumar, S.4
-
24
-
-
84962028302
-
Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries
-
[24] Wang, L., Liu, Z., Guo, Q., Wang, G., Yang, J., Li, P., Wang, X., Liu, L., Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries. Electrochim. Acta 199 (2016), 204–209, 10.1016/j.electacta.2016.03.160.
-
(2016)
Electrochim. Acta
, vol.199
, pp. 204-209
-
-
Wang, L.1
Liu, Z.2
Guo, Q.3
Wang, G.4
Yang, J.5
Li, P.6
Wang, X.7
Liu, L.8
-
25
-
-
84962881146
-
C4F8 plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries
-
[25] Lee, C., Han, Y., Seo, Y.D., Nakabayashi, K., Miyawaki, J., Santamaría, R., Menéndez, R., Yoon, S., Jang, J., C4F8 plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. Carbon 103 (2016), 28–35, 10.1016/j.carbon.2016.02.060.
-
(2016)
Carbon
, vol.103
, pp. 28-35
-
-
Lee, C.1
Han, Y.2
Seo, Y.D.3
Nakabayashi, K.4
Miyawaki, J.5
Santamaría, R.6
Menéndez, R.7
Yoon, S.8
Jang, J.9
-
26
-
-
84968735736
-
Binder-free graphene as an advanced anode for lithium batteries
-
[26] Sun, H., Castillo, A.E.D.R., Monaco, S., Capasso, A., Ansaldo, A., Prato, M., Dinh, D.A., Pellegrini, V., Scrosati, B., Manna, L., Bonaccorso, F., Binder-free graphene as an advanced anode for lithium batteries. J. Mater. Chem. A 4 (2016), 6886–6895, 10.1039/c5ta08553e.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 6886-6895
-
-
Sun, H.1
Castillo, A.E.D.R.2
Monaco, S.3
Capasso, A.4
Ansaldo, A.5
Prato, M.6
Dinh, D.A.7
Pellegrini, V.8
Scrosati, B.9
Manna, L.10
Bonaccorso, F.11
-
27
-
-
84973367334
-
A universal strategy to prepare porous graphene films: binder-free anodes for high-rate lithium-ion and sodium-ion batteries
-
[27] Zhang, X., Zhou, J., Liu, C., Chen, X., Song, H., A universal strategy to prepare porous graphene films: binder-free anodes for high-rate lithium-ion and sodium-ion batteries. J. Mater. Chem. A 4 (2016), 8837–8843, 10.1039/c6ta01907b.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 8837-8843
-
-
Zhang, X.1
Zhou, J.2
Liu, C.3
Chen, X.4
Song, H.5
-
28
-
-
0033357782
-
Li-insertion in hard carbon anode materials for Li-ion batteries
-
[28] Buiel, E., Dahn, J., Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta 45 (1999), 121–130, 10.1016/S0013-4686(99)00198-X.
-
(1999)
Electrochim. Acta
, vol.45
, pp. 121-130
-
-
Buiel, E.1
Dahn, J.2
-
29
-
-
0001221088
-
Lithium-7 nuclear magnetic resonance investigation of lithium insertion in hard carbon
-
[29] Dai, Y., Lithium-7 nuclear magnetic resonance investigation of lithium insertion in hard carbon. J. Electrochem. Soc. 145 (1998), 1179–1183, 10.1149/1.1838435.
-
(1998)
J. Electrochem. Soc.
, vol.145
, pp. 1179-1183
-
-
Dai, Y.1
-
30
-
-
33645656068
-
Structure characterization and lithiation mechanism of nongraphitized carbon for lithium secondary batteries
-
[30] Nagao, M., Pitteloud, C., Kamiyama, T., Otomo, T., Itoh, K., Fukunaga, T., Tatsumi, K., Kanno, R., Structure characterization and lithiation mechanism of nongraphitized carbon for lithium secondary batteries. J. Electrochem. Soc., 153, 2006, A914, 10.1149/1.2184908.
-
(2006)
J. Electrochem. Soc.
, vol.153
, pp. A914
-
-
Nagao, M.1
Pitteloud, C.2
Kamiyama, T.3
Otomo, T.4
Itoh, K.5
Fukunaga, T.6
Tatsumi, K.7
Kanno, R.8
-
31
-
-
84979763311
-
Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries
-
[31] Han, Y., Chung, D., Nakabayashi, K., Chung, J., Miyawaki, J., Yoon, S., Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries. Electrochim. Acta 213 (2016), 432–438, 10.1016/j.electacta.2016.07.138.
-
(2016)
Electrochim. Acta
, vol.213
, pp. 432-438
-
-
Han, Y.1
Chung, D.2
Nakabayashi, K.3
Chung, J.4
Miyawaki, J.5
Yoon, S.6
-
32
-
-
0035125208
-
Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches
-
[32] Mochida, I., Ku, C., Korai, Y., Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches. Carbon 39 (2001), 399–410, 10.1016/S0008-6223(00)00137-8.
-
(2001)
Carbon
, vol.39
, pp. 399-410
-
-
Mochida, I.1
Ku, C.2
Korai, Y.3
-
33
-
-
0000153557
-
Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries
-
[33] Mochida, I., Ku, C., Yoon, S., Korai, Y., Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. J. Power Sources 75 (1998), 214–222, 10.1016/S0378-7753(98)00101-3.
-
(1998)
J. Power Sources
, vol.75
, pp. 214-222
-
-
Mochida, I.1
Ku, C.2
Yoon, S.3
Korai, Y.4
-
34
-
-
85010353430
-
Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion
-
[34] Eftekhari, A., Fan, Z., Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mater. Chem. Front., 2017, 10.1039/c6qm00298f.
-
(2017)
Mater. Chem. Front.
-
-
Eftekhari, A.1
Fan, Z.2
-
35
-
-
84988625096
-
Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries
-
[35] Hansen, S., Quiroga-González, E., Carstensen, J., Föll, H., Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries. Electrochim. Acta 217 (2016), 283–291, 10.1016/j.electacta.2016.09.088.
-
(2016)
Electrochim. Acta
, vol.217
, pp. 283-291
-
-
Hansen, S.1
Quiroga-González, E.2
Carstensen, J.3
Föll, H.4
-
36
-
-
84979903118
-
Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation
-
[36] Casimir, A., Zhang, H., Ogoke, O., Amine, J.C., Lu, J., Wu, G., Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27 (2016), 359–376, 10.1016/j.nanoen.2016.07.023.
-
(2016)
Nano Energy
, vol.27
, pp. 359-376
-
-
Casimir, A.1
Zhang, H.2
Ogoke, O.3
Amine, J.C.4
Lu, J.5
Wu, G.6
-
37
-
-
84981187952
-
Nanostructured silicon anodes for high-performance lithium-ion batteries
-
[37] Rahman, M.A., Song, G., Bhatt, A.I., Wong, Y.C., Wen, C., Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 26 (2016), 647–678, 10.1002/adfm.201502959.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 647-678
-
-
Rahman, M.A.1
Song, G.2
Bhatt, A.I.3
Wong, Y.C.4
Wen, C.5
-
38
-
-
84964632114
-
Toward pre-lithiatied high areal capacity silicon anodes for lithium-ion batteries
-
[38] Marinaro, M., Weinberger, M., Wohlfahrt-Mehrens, M., Toward pre-lithiatied high areal capacity silicon anodes for lithium-ion batteries. Electrochim. Acta 206 (2016), 99–107, 10.1016/j.electacta.2016.03.139.
-
(2016)
Electrochim. Acta
, vol.206
, pp. 99-107
-
-
Marinaro, M.1
Weinberger, M.2
Wohlfahrt-Mehrens, M.3
-
39
-
-
84969504451
-
Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries
-
[39] Zhou, X., Wu, L., Yang, J., Tang, J., Xi, L., Wang, B., Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries. J. Power Sources 324 (2016), 33–40, 10.1016/j.jpowsour.2016.05.058.
-
(2016)
J. Power Sources
, vol.324
, pp. 33-40
-
-
Zhou, X.1
Wu, L.2
Yang, J.3
Tang, J.4
Xi, L.5
Wang, B.6
-
40
-
-
84958041069
-
Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries
-
[40] Halim, M., Hudaya, C., Kim, A., Lee, J.K., Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries. J. Mater. Chem. A 4 (2016), 2651–2656, 10.1039/c5ta09973k.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 2651-2656
-
-
Halim, M.1
Hudaya, C.2
Kim, A.3
Lee, J.K.4
-
41
-
-
84960097504
-
A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries
-
[41] Xie, Z., Ma, Z., Wang, Y., Zhou, Y., Lu, C., A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries. RSC Adv. 6 (2016), 22383–22388, 10.1039/c5ra27817a.
-
(2016)
RSC Adv.
, vol.6
, pp. 22383-22388
-
-
Xie, Z.1
Ma, Z.2
Wang, Y.3
Zhou, Y.4
Lu, C.5
-
42
-
-
84973911802
-
Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode
-
[42] Wu, C., Chang, C., Duh, J., Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode. J. Power Sources 325 (2016), 64–70, 10.1016/j.jpowsour.2016.06.025.
-
(2016)
J. Power Sources
, vol.325
, pp. 64-70
-
-
Wu, C.1
Chang, C.2
Duh, J.3
-
43
-
-
84969549174
-
High-performance lithium-ion battery with nano-porous polycrystalline silicon particles as anode
-
[43] Zhang, J., Zhang, C., Wu, S., Zheng, J., Zuo, Y., Xue, C., Li, C., Cheng, B., High-performance lithium-ion battery with nano-porous polycrystalline silicon particles as anode. Electrochim. Acta 208 (2016), 174–179, 10.1016/j.electacta.2016.05.032.
-
(2016)
Electrochim. Acta
, vol.208
, pp. 174-179
-
-
Zhang, J.1
Zhang, C.2
Wu, S.3
Zheng, J.4
Zuo, Y.5
Xue, C.6
Li, C.7
Cheng, B.8
-
44
-
-
84969756308
-
Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery
-
[44] Kim, W., Choi, J., Hong, S., Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 9 (2016), 2174–2181, 10.1007/s12274-016-1106-x.
-
(2016)
Nano Res.
, vol.9
, pp. 2174-2181
-
-
Kim, W.1
Choi, J.2
Hong, S.3
-
45
-
-
84975486149
-
Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries
-
[45] Dash, R., Pannala, S., Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries. Sci. Rep., 6, 2016, 27449, 10.1038/srep27449.
-
(2016)
Sci. Rep.
, vol.6
, pp. 27449
-
-
Dash, R.1
Pannala, S.2
-
46
-
-
84978924483
-
Asymmetric membranes containing micron-size silicon for high performance lithium ion battery anode
-
[46] Byrd, I., Wu, J., Asymmetric membranes containing micron-size silicon for high performance lithium ion battery anode. Electrochim. Acta 213 (2016), 46–54, 10.1016/j.electacta.2016.07.106.
-
(2016)
Electrochim. Acta
, vol.213
, pp. 46-54
-
-
Byrd, I.1
Wu, J.2
-
47
-
-
84981333697
-
Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries
-
[47] Yang, Y., Wang, Z., Zhou, R., Guo, H., Li, X., Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Mater. Lett. 184 (2016), 65–68, 10.1016/j.matlet.2016.08.006.
-
(2016)
Mater. Lett.
, vol.184
, pp. 65-68
-
-
Yang, Y.1
Wang, Z.2
Zhou, R.3
Guo, H.4
Li, X.5
-
48
-
-
84982857130
-
N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried si/graphite composite anode material for lithium ion batteries
-
[48] Zhou, R., Guo, H., Yang, Y., Wang, Z., Li, X., Zhou, Y., N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried si/graphite composite anode material for lithium ion batteries. J. Alloy. Compd. 689 (2016), 130–137, 10.1016/j.jallcom.2016.07.315.
-
(2016)
J. Alloy. Compd.
, vol.689
, pp. 130-137
-
-
Zhou, R.1
Guo, H.2
Yang, Y.3
Wang, Z.4
Li, X.5
Zhou, Y.6
-
49
-
-
84984710824
-
Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries
-
[49] Yue, X., Sun, W., Zhang, J., Wang, F., Sun, K., Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries. J. Power Sources 329 (2016), 422–427, 10.1016/j.jpowsour.2016.08.104.
-
(2016)
J. Power Sources
, vol.329
, pp. 422-427
-
-
Yue, X.1
Sun, W.2
Zhang, J.3
Wang, F.4
Sun, K.5
-
50
-
-
84971283904
-
Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries
-
[50] Jeong, M., Islam, M., Du, H.L., Lee, Y., Sun, H., Choi, W., Lee, J.K., Chung, K.Y., Jung, H., Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries. Electrochim. Acta 209 (2016), 299–307, 10.1016/j.electacta.2016.05.080.
-
(2016)
Electrochim. Acta
, vol.209
, pp. 299-307
-
-
Jeong, M.1
Islam, M.2
Du, H.L.3
Lee, Y.4
Sun, H.5
Choi, W.6
Lee, J.K.7
Chung, K.Y.8
Jung, H.9
-
51
-
-
84875802946
-
Structural and electrochemical investigation during the first charging cycles of silicon microwire array anodes for high capacity lithium ion batteries
-
[51] Quiroga-González, E., Carstensen, J., Föll, H., Structural and electrochemical investigation during the first charging cycles of silicon microwire array anodes for high capacity lithium ion batteries. Materials 6 (2013), 626–636, 10.3390/ma6020626.
-
(2013)
Materials
, vol.6
, pp. 626-636
-
-
Quiroga-González, E.1
Carstensen, J.2
Föll, H.3
-
52
-
-
33846261643
-
Reversible cycling of crystalline silicon powder
-
[52] Obrovac, M.N., Krause, L.J., Reversible cycling of crystalline silicon powder. J. Electrochem. Soc., 154, 2007, A103, 10.1149/1.2402112.
-
(2007)
J. Electrochem. Soc.
, vol.154
, pp. A103
-
-
Obrovac, M.N.1
Krause, L.J.2
-
53
-
-
76449096527
-
Maximum Li storage in Si nanowires for the high capacity three-dimensional li-ion battery
-
[53] Kang, K., Lee, H., Han, D., Kim, G., Lee, D., Lee, G., Kang, Y., Jo, M., Maximum Li storage in Si nanowires for the high capacity three-dimensional li-ion battery. Appl. Phys. Lett., 96, 2010, 053110, 10.1063/1.3299006.
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 053110
-
-
Kang, K.1
Lee, H.2
Han, D.3
Kim, G.4
Lee, D.5
Lee, G.6
Kang, Y.7
Jo, M.8
-
54
-
-
62349107104
-
Structural and electrochemical study of the reaction of lithium with silicon nanowires
-
[54] Chan, C.K., Ruffo, R., Hong, S.S., Huggins, R.A., Cui, Y., Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 189 (2009), 34–39, 10.1016/j.jpowsour.2008.12.047.
-
(2009)
J. Power Sources
, vol.189
, pp. 34-39
-
-
Chan, C.K.1
Ruffo, R.2
Hong, S.S.3
Huggins, R.A.4
Cui, Y.5
-
55
-
-
84971542042
-
Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes
-
[55] Chen, Y., Hu, Y., Shen, Z., Chen, R., He, X., Zhang, X., Zhang, Y., Wu, K., Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes. Electrochim. Acta 210 (2016), 53–60, 10.1016/j.electacta.2016.05.086.
-
(2016)
Electrochim. Acta
, vol.210
, pp. 53-60
-
-
Chen, Y.1
Hu, Y.2
Shen, Z.3
Chen, R.4
He, X.5
Zhang, X.6
Zhang, Y.7
Wu, K.8
-
56
-
-
84964818775
-
Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries
-
[56] Ren, Y., Wu, X., Li, M., Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochim. Acta 206 (2016), 328–336, 10.1016/j.electacta.2016.04.161.
-
(2016)
Electrochim. Acta
, vol.206
, pp. 328-336
-
-
Ren, Y.1
Wu, X.2
Li, M.3
-
57
-
-
84958758595
-
Amorphous carbon shell on Si particles fabricated by carbonizing of polyphosphazene and enhanced performance as lithium ion battery anode
-
[57] Zhang, C., Song, A., Yuan, P., Wang, Q., Wang, P., Zhang, S., Cao, G., Hu, J., Amorphous carbon shell on Si particles fabricated by carbonizing of polyphosphazene and enhanced performance as lithium ion battery anode. Mater. Lett. 2016 (2016), 63–67, 10.1016/j.matlet.2016.02.034.
-
(2016)
Mater. Lett.
, vol.2016
, pp. 63-67
-
-
Zhang, C.1
Song, A.2
Yuan, P.3
Wang, Q.4
Wang, P.5
Zhang, S.6
Cao, G.7
Hu, J.8
-
58
-
-
84956897187
-
Polyacrylonitrile-based turbostratic graphite-like carbon wrapped silicon nanoparticles: a new-type anode material for lithium ion battery
-
[58] Dong, X., Lu, C., Wang, L., Zhou, P., Li, D., Wang, L., Wu, G., Li, Y., Polyacrylonitrile-based turbostratic graphite-like carbon wrapped silicon nanoparticles: a new-type anode material for lithium ion battery. RSC Adv. 6 (2016), 12737–12743, 10.1039/c5ra25380b.
-
(2016)
RSC Adv.
, vol.6
, pp. 12737-12743
-
-
Dong, X.1
Lu, C.2
Wang, L.3
Zhou, P.4
Li, D.5
Wang, L.6
Wu, G.7
Li, Y.8
-
59
-
-
84988419314
-
Enhancing silicon performance via LiPON coating: a prospective anode for lithium ion batteries
-
[59] Hamedi Jouybari, Y., Berkemeier, F., Enhancing silicon performance via LiPON coating: a prospective anode for lithium ion batteries. Electrochim. Acta 217 (2016), 171–180, 10.1016/j.electacta.2016.09.040.
-
(2016)
Electrochim. Acta
, vol.217
, pp. 171-180
-
-
Hamedi Jouybari, Y.1
Berkemeier, F.2
-
60
-
-
81355153839
-
The effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes
-
[60] Xun, S., Song, X., Wang, L., Grass, M.E., Liu, Z., Battaglia, V.S., Liu, G., The effects of native oxide surface layer on the electrochemical performance of Si nanoparticle-based electrodes. J. Electrochem. Soc., 158, 2011, A1260, 10.1149/2.007112jes.
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A1260
-
-
Xun, S.1
Song, X.2
Wang, L.3
Grass, M.E.4
Liu, Z.5
Battaglia, V.S.6
Liu, G.7
-
61
-
-
84989910993
-
Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries
-
[61] Miyazaki, R., Ohta, N., Ohnishi, T., Takada, K., Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries. J. Power Sources 329 (2016), 41–49, 10.1016/j.jpowsour.2016.08.070.
-
(2016)
J. Power Sources
, vol.329
, pp. 41-49
-
-
Miyazaki, R.1
Ohta, N.2
Ohnishi, T.3
Takada, K.4
-
62
-
-
84971225721
-
Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in lithium-ion batteries
-
[62] Takezawa, H., Ito, S., Yoshizawa, H., Abe, T., Structural stabilization on SiOx film anode with large areal capacity for enhanced cyclability in lithium-ion batteries. J. Power Sources 324 (2016), 45–51, 10.1016/j.jpowsour.2016.05.061.
-
(2016)
J. Power Sources
, vol.324
, pp. 45-51
-
-
Takezawa, H.1
Ito, S.2
Yoshizawa, H.3
Abe, T.4
-
63
-
-
84958037860
-
Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries
-
[63] Wang, L., Bao, K., Lou, Z., Liang, G., Zhou, Q., Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries. Dalton Trans. 45 (2016), 2814–2817, 10.1039/c5dt04749h.
-
(2016)
Dalton Trans.
, vol.45
, pp. 2814-2817
-
-
Wang, L.1
Bao, K.2
Lou, Z.3
Liang, G.4
Zhou, Q.5
-
64
-
-
84977952422
-
Multidimensional germanium-based materials as anodes for lithium-ion batteries
-
[64] Qin, J., Cao, M., Multidimensional germanium-based materials as anodes for lithium-ion batteries. Chem. Asian J. 11 (2016), 1169–1181, 10.1002/asia.201600005.
-
(2016)
Chem. Asian J.
, vol.11
, pp. 1169-1181
-
-
Qin, J.1
Cao, M.2
-
65
-
-
84988662304
-
Germanium-based multiphase material as a high-capacity and cycle-stable anode for lithium-ion batteries
-
[65] Kwon, D., Choi, S., Wang, G., Park, S., Germanium-based multiphase material as a high-capacity and cycle-stable anode for lithium-ion batteries. RSC Adv. 6 (2016), 89176–89180, 10.1039/c6ra19811b.
-
(2016)
RSC Adv.
, vol.6
, pp. 89176-89180
-
-
Kwon, D.1
Choi, S.2
Wang, G.3
Park, S.4
-
66
-
-
85002978776
-
Germanium encapsulated in sulfur and nitrogen Co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries
-
[66] Yang, C., Jiang, Y., Liu, X., Zhong, X., Yu, Y., Germanium encapsulated in sulfur and nitrogen Co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries. J. Mater. Chem. A 4 (2016), 18711–18716, 10.1039/c6ta08681k.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 18711-18716
-
-
Yang, C.1
Jiang, Y.2
Liu, X.3
Zhong, X.4
Yu, Y.5
-
67
-
-
85006042911
-
Lithium germanate (Li2GeO3): a high‐performance anode material for lithium‐ion batteries
-
[67] Rahman, M.M., Sultana, I., Yang, T., Chen, Z., Sharma, N., Glushenkov, A.M., Chen, Y., Lithium germanate (Li2GeO3): a high‐performance anode material for lithium‐ion batteries. Angew. Chem. Int. Ed. 55 (2016), 16059–16063, 10.1002/anie.201609343.
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 16059-16063
-
-
Rahman, M.M.1
Sultana, I.2
Yang, T.3
Chen, Z.4
Sharma, N.5
Glushenkov, A.M.6
Chen, Y.7
-
68
-
-
84923404857
-
Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery
-
[68] Li, X., Yang, Z., Fu, Y., Qiao, L., Li, D., Yue, H., He, D., Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9 (2015), 1858–1867, 10.1021/nn506760p.
-
(2015)
ACS Nano
, vol.9
, pp. 1858-1867
-
-
Li, X.1
Yang, Z.2
Fu, Y.3
Qiao, L.4
Li, D.5
Yue, H.6
He, D.7
-
69
-
-
84937431986
-
Nanoporous germanium as high-capacity lithium-ion battery anode
-
[69] Liu, S., Feng, J., Bian, X., Qian, Y., Liu, J., Xu, H., Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy 13 (2015), 651–657, 10.1016/j.nanoen.2015.03.039.
-
(2015)
Nano Energy
, vol.13
, pp. 651-657
-
-
Liu, S.1
Feng, J.2
Bian, X.3
Qian, Y.4
Liu, J.5
Xu, H.6
-
70
-
-
84921697040
-
Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries
-
[70] Hao, J., Li, N., Ma, X., Liu, X., Liu, X., Li, Y., Xu, H., Zhao, J., Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries. Mater. Lett. 2015 (2015), 50–53, 10.1016/j.matlet.2015.01.022.
-
(2015)
Mater. Lett.
, vol.2015
, pp. 50-53
-
-
Hao, J.1
Li, N.2
Ma, X.3
Liu, X.4
Liu, X.5
Li, Y.6
Xu, H.7
Zhao, J.8
-
71
-
-
84931274831
-
Honeycomb-like macro-germanium as high-capacity anodes for lithium-ion batteries with good cycling and rate performance
-
[71] Liang, J., Li, X., Hou, Z., Zhang, T., Zhu, Y., Yan, X., Qian, Y., Honeycomb-like macro-germanium as high-capacity anodes for lithium-ion batteries with good cycling and rate performance. Chem. Mater. 27 (2015), 4156–4164, 10.1021/acs.chemmater.5b01527.
-
(2015)
Chem. Mater.
, vol.27
, pp. 4156-4164
-
-
Liang, J.1
Li, X.2
Hou, Z.3
Zhang, T.4
Zhu, Y.5
Yan, X.6
Qian, Y.7
-
72
-
-
84922806205
-
Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries
-
[72] Jung, H., Allan, P.K., Hu, Y., Borkiewicz, O.J., Wang, X., Han, W., Du, L., Pickard, C.J., Chupas, P.J., Chapman, K.W., Morris, A.J., Grey, C.P., Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries. Chem. Mater. 27 (2015), 1031–1041, 10.1021/cm504312x.
-
(2015)
Chem. Mater.
, vol.27
, pp. 1031-1041
-
-
Jung, H.1
Allan, P.K.2
Hu, Y.3
Borkiewicz, O.J.4
Wang, X.5
Han, W.6
Du, L.7
Pickard, C.J.8
Chupas, P.J.9
Chapman, K.W.10
Morris, A.J.11
Grey, C.P.12
-
73
-
-
84923169505
-
Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries
-
[73] Silberstein, K.E., Lowe, M.A., Richards, B., Gao, J., Hanrath, T., Abruña, H.D., Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries. Langmuir 31 (2015), 2028–2035, 10.1021/la504382q.
-
(2015)
Langmuir
, vol.31
, pp. 2028-2035
-
-
Silberstein, K.E.1
Lowe, M.A.2
Richards, B.3
Gao, J.4
Hanrath, T.5
Abruña, H.D.6
-
74
-
-
84948445731
-
Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries
-
[74] Ngo, D.T., Le, H.T.T., Kim, C., Lee, J., Fisher, J.G., Kim, I., Park, C., Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 8 (2015), 3577–3588, 10.1039/c5ee02183a.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 3577-3588
-
-
Ngo, D.T.1
Le, H.T.T.2
Kim, C.3
Lee, J.4
Fisher, J.G.5
Kim, I.6
Park, C.7
-
75
-
-
84918491378
-
Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries
-
[75] Li, D., Feng, C., Liu, H.K., Guo, Z., Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries. J. Mater. Chem. A 3 (2015), 978–981, 10.1039/c4ta05982d.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 978-981
-
-
Li, D.1
Feng, C.2
Liu, H.K.3
Guo, Z.4
-
76
-
-
84924281077
-
High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material
-
[76] Klavetter, K.C., Souza, J.P.D., Heller, A., Mullins, C. Buddie, High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material. J. Mater. Chem. A 3 (2015), 5829–5834, 10.1039/c5ta00319a.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 5829-5834
-
-
Klavetter, K.C.1
Souza, J.P.D.2
Heller, A.3
Mullins, C.B.4
-
77
-
-
84962833223
-
A facile route to dually protected Ge@GeO2 composites as anode materials for lithium ion battery
-
[77] Xu, R., Wu, S., Du, Y., Zhang, Z., A facile route to dually protected Ge@GeO2 composites as anode materials for lithium ion battery. Chem. Eng. J. 296 (2016), 349–355, 10.1016/j.cej.2016.03.126.
-
(2016)
Chem. Eng. J.
, vol.296
, pp. 349-355
-
-
Xu, R.1
Wu, S.2
Du, Y.3
Zhang, Z.4
-
78
-
-
84981252365
-
Core-shell Ge@graphene@TiO nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery
-
[78] Wang, X., Fan, L., Gong, D., Zhu, J., Zhang, Q., Lu, B., Core-shell Ge@graphene@TiO nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 26 (2016), 1104–1111, 10.1002/adfm.201504589.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 1104-1111
-
-
Wang, X.1
Fan, L.2
Gong, D.3
Zhu, J.4
Zhang, Q.5
Lu, B.6
-
79
-
-
84959880490
-
Strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes
-
[79] Li, D., Wang, H., Liu, H.K., Guo, Z., New, A., Strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv. Energy Mater., 6, 2016, 1501666, 10.1002/aenm.201501666.
-
(2016)
Adv. Energy Mater.
, vol.6
, pp. 1501666
-
-
Li, D.1
Wang, H.2
Liu, H.K.3
Guo, Z.4
New, A.5
-
80
-
-
84959364789
-
Porous Zn2GeO4 nanowires with uniform carbon-buffer layer for lithium-ion battery anodes with long cycle life
-
[80] Kim, J.S., Kim, A., Byeon, Y.W., Ahn, J.P., Byun, D., Lee, J.K., Porous Zn2GeO4 nanowires with uniform carbon-buffer layer for lithium-ion battery anodes with long cycle life. Electrochim. Acta 195 (2016), 43–50, 10.1016/j.electacta.2016.02.118.
-
(2016)
Electrochim. Acta
, vol.195
, pp. 43-50
-
-
Kim, J.S.1
Kim, A.2
Byeon, Y.W.3
Ahn, J.P.4
Byun, D.5
Lee, J.K.6
-
81
-
-
84961658266
-
Synthesis and electrochemical characterization of nano-sized Ag4Sn particles as anode material for lithium-ion batteries
-
[81] Schmuelling, G., Oehl, N., Fromm, O., Knipper, M., Kolny-Olesiak, J., Plaggenborg, T., Parisi, J., Winter, M., Placke, T., Synthesis and electrochemical characterization of nano-sized Ag4Sn particles as anode material for lithium-ion batteries. Electrochim. Acta 196 (2016), 597–602, 10.1016/j.electacta.2016.03.019.
-
(2016)
Electrochim. Acta
, vol.196
, pp. 597-602
-
-
Schmuelling, G.1
Oehl, N.2
Fromm, O.3
Knipper, M.4
Kolny-Olesiak, J.5
Plaggenborg, T.6
Parisi, J.7
Winter, M.8
Placke, T.9
-
82
-
-
84959503297
-
Sandwich-like CNTs@SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries
-
[82] Zhang, J., Ma, Z., Jiang, W., Zou, Y., Wang, Y., Lu, C., Sandwich-like CNTs@SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries. J. Electroanal. Chem. 767 (2016), 49–55, 10.1016/j.jelechem.2016.01.043.
-
(2016)
J. Electroanal. Chem.
, vol.767
, pp. 49-55
-
-
Zhang, J.1
Ma, Z.2
Jiang, W.3
Zou, Y.4
Wang, Y.5
Lu, C.6
-
83
-
-
84960192866
-
High capacity lithium ion battery anodes using Sn nanowires encapsulated Al2O3 tubes in carbon matrix
-
[83] Fang, D., Li, L., Xu, W., Zheng, H., Xu, J., Jiang, M., Liu, R., Jiang, X., Luo, Z., Xiong, C., Wang, Q., High capacity lithium ion battery anodes using Sn nanowires encapsulated Al2O3 tubes in carbon matrix. Adv. Mater. Interfaces, 3, 2016, 1500491, 10.1002/admi.201500491.
-
(2016)
Adv. Mater. Interfaces
, vol.3
, pp. 1500491
-
-
Fang, D.1
Li, L.2
Xu, W.3
Zheng, H.4
Xu, J.5
Jiang, M.6
Liu, R.7
Jiang, X.8
Luo, Z.9
Xiong, C.10
Wang, Q.11
-
84
-
-
84958173859
-
Simple preparation of Cu6Sn5/Sn composites as anode materials for lithium-ion batteries
-
[84] Han, Q., Yi, Z., Cheng, Y., Wu, Y., Wang, L., Simple preparation of Cu6Sn5/Sn composites as anode materials for lithium-ion batteries. RSC Adv. 6 (2016), 15279–15285, 10.1039/c5ra23788b.
-
(2016)
RSC Adv.
, vol.6
, pp. 15279-15285
-
-
Han, Q.1
Yi, Z.2
Cheng, Y.3
Wu, Y.4
Wang, L.5
-
85
-
-
84958214516
-
Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes
-
[85] Tokur, M., Algul, H., Uysal, M., Cetinkaya, T., Alp, A., Akbulut, H., Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes. Surf. Coat. Technol. 288 (2016), 62–68, 10.1016/j.surfcoat.2016.01.015.
-
(2016)
Surf. Coat. Technol.
, vol.288
, pp. 62-68
-
-
Tokur, M.1
Algul, H.2
Uysal, M.3
Cetinkaya, T.4
Alp, A.5
Akbulut, H.6
-
86
-
-
84978471937
-
In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries
-
[86] Kumar, V.B., Tang, J., Lee, K.J., Pol, V.G., Gedanken, A., In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries. RSC Adv. 6 (2016), 66256–66265, 10.1039/c6ra09926b.
-
(2016)
RSC Adv.
, vol.6
, pp. 66256-66265
-
-
Kumar, V.B.1
Tang, J.2
Lee, K.J.3
Pol, V.G.4
Gedanken, A.5
-
87
-
-
84982862080
-
Pulsed current electrodeposition parameters to control the Sn particle size to enhance electrochemical performance as anode material in lithium ion batteries
-
[87] Javadian, S., Kakemam, J., Sadeghi, A., Gharibi, H., Pulsed current electrodeposition parameters to control the Sn particle size to enhance electrochemical performance as anode material in lithium ion batteries. Surf. Coat. Technol. 305 (2016), 41–48, 10.1016/j.surfcoat.2016.07.079.
-
(2016)
Surf. Coat. Technol.
, vol.305
, pp. 41-48
-
-
Javadian, S.1
Kakemam, J.2
Sadeghi, A.3
Gharibi, H.4
-
88
-
-
84978396688
-
Polyvinyl pyrrolidone wrapped Sn nanoparticles/carbon xerogel composite as anode material for high performance lithium ion batteries
-
[88] Zhang, Z., Yin, L., Polyvinyl pyrrolidone wrapped Sn nanoparticles/carbon xerogel composite as anode material for high performance lithium ion batteries. Electrochim. Acta 212 (2016), 594–602, 10.1016/j.electacta.2016.06.173.
-
(2016)
Electrochim. Acta
, vol.212
, pp. 594-602
-
-
Zhang, Z.1
Yin, L.2
-
89
-
-
84989881322
-
Sn nanoparticles uniformly dispersed in N-doped hollow carbon nanospheres as anode for lithium-ion batteries
-
[89] Guo, C., Yang, Q., Liang, J., Wang, L., Zhu, Y., Qian, Y., Sn nanoparticles uniformly dispersed in N-doped hollow carbon nanospheres as anode for lithium-ion batteries. Mater. Lett. 184 (2016), 332–335, 10.1016/j.matlet.2016.08.053.
-
(2016)
Mater. Lett.
, vol.184
, pp. 332-335
-
-
Guo, C.1
Yang, Q.2
Liang, J.3
Wang, L.4
Zhu, Y.5
Qian, Y.6
-
90
-
-
85007174723
-
SnO2/Sn nanoparticles embedded in ordered porous carbon framework as high performance lithium-ion battery anodes
-
[90] Wang, Z., Wang, M., Yang, Z., Bai, Y., Ma, Y., Wang, G., Huang, Y., Li, X., SnO2/Sn nanoparticles embedded in ordered porous carbon framework as high performance lithium-ion battery anodes. ChemElectroChem, 2016, 10.1002/celc.201600594.
-
(2016)
ChemElectroChem
-
-
Wang, Z.1
Wang, M.2
Yang, Z.3
Bai, Y.4
Ma, Y.5
Wang, G.6
Huang, Y.7
Li, X.8
-
91
-
-
85007143215
-
Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries
-
[91] Wang, Z., Wang, D., Luo, S., Bao, S., Liu, Y., Qi, X., He, C., Shi, C., Zhao, N., Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries. New J. Chem. 41 (2016), 393–402, 10.1039/c6nj02458k.
-
(2016)
New J. Chem.
, vol.41
, pp. 393-402
-
-
Wang, Z.1
Wang, D.2
Luo, S.3
Bao, S.4
Liu, Y.5
Qi, X.6
He, C.7
Shi, C.8
Zhao, N.9
-
92
-
-
84928941264
-
Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries
-
[92] Zhou, Y., Wang, H., Zeng, Y., Li, C., Shen, Y., Chang, J., Duan, Q., Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries. Mater. Lett. 2015 (2015), 18–22, 10.1016/j.matlet.2015.04.104.
-
(2015)
Mater. Lett.
, vol.2015
, pp. 18-22
-
-
Zhou, Y.1
Wang, H.2
Zeng, Y.3
Li, C.4
Shen, Y.5
Chang, J.6
Duan, Q.7
-
93
-
-
84921038584
-
Preparation and electrochemical properties of profiled carbon fiber-supported sn anodes for lithium-ion batteries
-
[93] Bai, X., Wang, B., Wang, H., Jiang, J., Preparation and electrochemical properties of profiled carbon fiber-supported sn anodes for lithium-ion batteries. J. Alloy. Compd. 628 (2015), 407–412, 10.1016/j.jallcom.2014.12.211.
-
(2015)
J. Alloy. Compd.
, vol.628
, pp. 407-412
-
-
Bai, X.1
Wang, B.2
Wang, H.3
Jiang, J.4
-
94
-
-
84988420181
-
Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries
-
[94] Dai, R., Sun, W., Wang, Y., Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries. Electrochim. Acta 217 (2016), 123–131, 10.1016/j.electacta.2016.08.051.
-
(2016)
Electrochim. Acta
, vol.217
, pp. 123-131
-
-
Dai, R.1
Sun, W.2
Wang, Y.3
-
95
-
-
84992096745
-
Novel hierarchical flowers-like Sn3O4 firstly used as anode materials for lithium ion batteries
-
[95] Chen, X., Huang, Y., Zhang, K., Feng, X., Wei, C., Novel hierarchical flowers-like Sn3O4 firstly used as anode materials for lithium ion batteries. J. Alloy. Compd. 690 (2017), 765–770, 10.1016/j.jallcom.2016.08.192.
-
(2017)
J. Alloy. Compd.
, vol.690
, pp. 765-770
-
-
Chen, X.1
Huang, Y.2
Zhang, K.3
Feng, X.4
Wei, C.5
-
96
-
-
84974777839
-
Fabrication of SnO2 asymmetric membranes for high performance lithium battery anode
-
[96] Wu, J., Chen, H., Byrd, I., Lovelace, S., Jin, C., Fabrication of SnO2 asymmetric membranes for high performance lithium battery anode. ACS Appl. Mater. Interfaces 8 (2016), 13946–13956, 10.1021/acsami.6b03310.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 13946-13956
-
-
Wu, J.1
Chen, H.2
Byrd, I.3
Lovelace, S.4
Jin, C.5
-
97
-
-
85007360062
-
Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery
-
[97] Yin, L., Chai, S., Wang, F., Huang, J., Li, J., Liu, C., Kong, X., Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram. Int. 42 (2016), 9433–9437, 10.1016/j.ceramint.2016.02.173.
-
(2016)
Ceram. Int.
, vol.42
, pp. 9433-9437
-
-
Yin, L.1
Chai, S.2
Wang, F.3
Huang, J.4
Li, J.5
Liu, C.6
Kong, X.7
-
98
-
-
84963595990
-
Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries
-
[98] Miao, C., Liu, M., He, Y., Qin, X., Tang, L., Huang, B., Li, R., Li, B., Kang, F., Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Mater. 3 (2016), 98–105, 10.1016/j.ensm.2016.01.006.
-
(2016)
Energy Storage Mater.
, vol.3
, pp. 98-105
-
-
Miao, C.1
Liu, M.2
He, Y.3
Qin, X.4
Tang, L.5
Huang, B.6
Li, R.7
Li, B.8
Kang, F.9
-
99
-
-
84966715249
-
Hierarchical three-dimensional porous SnS2/carbon cloth anode for high-performance lithium ion batteries
-
[99] Chao, J., Zhang, X., Xing, S., Fan, Q., Yang, J., Zhao, L., Li, X., Hierarchical three-dimensional porous SnS2/carbon cloth anode for high-performance lithium ion batteries. Mater. Sci. Eng. B 210 (2016), 24–28, 10.1016/j.mseb.2016.03.007.
-
(2016)
Mater. Sci. Eng. B
, vol.210
, pp. 24-28
-
-
Chao, J.1
Zhang, X.2
Xing, S.3
Fan, Q.4
Yang, J.5
Zhao, L.6
Li, X.7
-
100
-
-
84989282638
-
Enhanced cycle stability of polypyrrole-derived nitrogen-doped carbon-coated tin oxide hollow nanofibers for lithium battery anodes
-
[100] Pham-Cong, D., Park, J.S., Kim, J.H., Kim, J., Braun, P.V., Choi, J.H., Kim, S.J., Jeong, S.Y., Cho, C.R., Enhanced cycle stability of polypyrrole-derived nitrogen-doped carbon-coated tin oxide hollow nanofibers for lithium battery anodes. Carbon 111 (2017), 28–37, 10.1016/j.carbon.2016.09.057.
-
(2017)
Carbon
, vol.111
, pp. 28-37
-
-
Pham-Cong, D.1
Park, J.S.2
Kim, J.H.3
Kim, J.4
Braun, P.V.5
Choi, J.H.6
Kim, S.J.7
Jeong, S.Y.8
Cho, C.R.9
-
101
-
-
84976605939
-
Tin selenide − multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries
-
[101] Gurung, A., Naderi, R., Vaagensmith, B., Varnekar, G., Zhou, Z., Elbohy, H., Qiao, Q., Tin selenide − multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries. Electrochim. Acta 211 (2016), 720–725, 10.1016/j.electacta.2016.06.065.
-
(2016)
Electrochim. Acta
, vol.211
, pp. 720-725
-
-
Gurung, A.1
Naderi, R.2
Vaagensmith, B.3
Varnekar, G.4
Zhou, Z.5
Elbohy, H.6
Qiao, Q.7
-
102
-
-
84954285048
-
Strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries
-
[102] Yi, Z., Han, Q., Cheng, Y., Wang, F., Wu, Y., Wang, L., Novel, A., Strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries. Electrochim. Acta 190 (2016), 804–810, 10.1016/j.electacta.2015.12.150.
-
(2016)
Electrochim. Acta
, vol.190
, pp. 804-810
-
-
Yi, Z.1
Han, Q.2
Cheng, Y.3
Wang, F.4
Wu, Y.5
Wang, L.6
Novel, A.7
-
103
-
-
84973340081
-
Three-dimensional nanoarchitecture SnSbZn–C composite nanofibers as anode materials for lithium-ion batteries
-
[103] Liu, L., Zhang, P., Li, Y., Ren, X., Deng, L., Three-dimensional nanoarchitecture SnSbZn–C composite nanofibers as anode materials for lithium-ion batteries. RSC Adv. 6 (2016), 52746–52753, 10.1039/c6ra09661a.
-
(2016)
RSC Adv.
, vol.6
, pp. 52746-52753
-
-
Liu, L.1
Zhang, P.2
Li, Y.3
Ren, X.4
Deng, L.5
-
104
-
-
84984677224
-
Preparation of a Sb/Cu2Sb/C composite as an anode material for lithium-ion batteries
-
[104] Yang, T., Wang, H., Xu, J., Wang, L., Song, W., Mao, Y., Ma, J., Preparation of a Sb/Cu2Sb/C composite as an anode material for lithium-ion batteries. RSC Adv. 6 (2016), 78959–78962, 10.1039/c6ra14072f.
-
(2016)
RSC Adv.
, vol.6
, pp. 78959-78962
-
-
Yang, T.1
Wang, H.2
Xu, J.3
Wang, L.4
Song, W.5
Mao, Y.6
Ma, J.7
-
105
-
-
84987788559
-
Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes
-
[105] Yi, Z., Han, Q., Zan, P., Wu, Y., Cheng, Y., Wang, L., Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. J. Power Sources 331 (2016), 16–21, 10.1016/j.jpowsour.2016.09.027.
-
(2016)
J. Power Sources
, vol.331
, pp. 16-21
-
-
Yi, Z.1
Han, Q.2
Zan, P.3
Wu, Y.4
Cheng, Y.5
Wang, L.6
-
106
-
-
84994442806
-
Performance of SnSb:ce, Co alloy as anode for lithium-ion batteries
-
[106] Lakshmi, D., Nalini, B., Performance of SnSb:ce, Co alloy as anode for lithium-ion batteries. J. Solid State Electrochem., 2016, 1–8, 10.1007/s10008-016-3456-4.
-
(2016)
J. Solid State Electrochem.
, pp. 1-8
-
-
Lakshmi, D.1
Nalini, B.2
-
107
-
-
84934911969
-
Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application
-
[107] Birrozzi, A., Maroni, F., Raccichini, R., Tossici, R., Marassi, R., Nobili, F., Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application. J. Power Sources 294 (2015), 248–253, 10.1016/j.jpowsour.2015.06.065.
-
(2015)
J. Power Sources
, vol.294
, pp. 248-253
-
-
Birrozzi, A.1
Maroni, F.2
Raccichini, R.3
Tossici, R.4
Marassi, R.5
Nobili, F.6
-
108
-
-
84907964955
-
Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes
-
[108] Niu, X., Zhou, H., Li, Z., Shan, X., Xia, X., Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes. J. Alloy. Compd. 620 (2015), 308–314, 10.1016/j.jallcom.2014.09.150.
-
(2015)
J. Alloy. Compd.
, vol.620
, pp. 308-314
-
-
Niu, X.1
Zhou, H.2
Li, Z.3
Shan, X.4
Xia, X.5
-
109
-
-
84928667612
-
High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium-ion batteries
-
[109] Zhao, Y., Manthiram, A., High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 27 (2015), 3096–3101, 10.1021/acs.chemmater.5b00616.
-
(2015)
Chem. Mater.
, vol.27
, pp. 3096-3101
-
-
Zhao, Y.1
Manthiram, A.2
-
110
-
-
84958787340
-
The lamella SnSbCux/MCMB/carbon composite as high stability and durable anodes for lithium ion battery
-
[110] Ru, Q., Chen, X., Li, J., Guo, L., Hu, S., The lamella SnSbCux/MCMB/carbon composite as high stability and durable anodes for lithium ion battery. Electrochim. Acta 193 (2016), 180–190, 10.1016/j.electacta.2016.02.029.
-
(2016)
Electrochim. Acta
, vol.193
, pp. 180-190
-
-
Ru, Q.1
Chen, X.2
Li, J.3
Guo, L.4
Hu, S.5
-
111
-
-
0037258283
-
Structural transformations in intermetallic electrodes for lithium batteries
-
[111] Fransson, L.M.L., Vaughey, J.T., Edström, K., Thackeray, M.M., Structural transformations in intermetallic electrodes for lithium batteries. J. Electrochem. Soc., 150, 2003, A86, 10.1149/1.1524610.
-
(2003)
J. Electrochem. Soc.
, vol.150
, pp. A86
-
-
Fransson, L.M.L.1
Vaughey, J.T.2
Edström, K.3
Thackeray, M.M.4
-
112
-
-
0033639817
-
Intermetallic insertion electrodes with a zinc blende-type structure for Li batteries: a study of LixInSb (0≤x≤3)
-
[112] Vaughey, J.T., Intermetallic insertion electrodes with a zinc blende-type structure for Li batteries: a study of LixInSb (0≤x≤3). Electrochem. Solid-State Lett. 3 (2000), 13–16, 10.1149/1.1390944.
-
(2000)
Electrochem. Solid-State Lett.
, vol.3
, pp. 13-16
-
-
Vaughey, J.T.1
-
113
-
-
0037216356
-
Structural considerations of intermetallic electrodes for lithium batteries
-
[113] Thackeray, M., Vaughey, J., Johnson, C., Kropf, A., Benedek, R., Fransson, L., Edström, K., Structural considerations of intermetallic electrodes for lithium batteries. J. Power Sources 113 (2003), 124–130, 10.1016/S0378-7753(02)00538-4.
-
(2003)
J. Power Sources
, vol.113
, pp. 124-130
-
-
Thackeray, M.1
Vaughey, J.2
Johnson, C.3
Kropf, A.4
Benedek, R.5
Fransson, L.6
Edström, K.7
-
114
-
-
0034979259
-
Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study
-
[114] Fransson, L., Vaughey, J., Benedek, R., Edström, K., Thomas, J., Thackeray, M., Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study. Electrochem. Commun. 3 (2001), 317–323, 10.1016/S1388-2481(01)00140-0.
-
(2001)
Electrochem. Commun.
, vol.3
, pp. 317-323
-
-
Fransson, L.1
Vaughey, J.2
Benedek, R.3
Edström, K.4
Thomas, J.5
Thackeray, M.6
-
115
-
-
49449089178
-
Direct electrodeposition of Cu2Sb for lithium-ion battery anodes
-
[115] Mosby, J.M., Prieto, A.L., Direct electrodeposition of Cu2Sb for lithium-ion battery anodes. J. Am. Chem. Soc. 130 (2008), 10656–10661, 10.1021/ja801745n.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 10656-10661
-
-
Mosby, J.M.1
Prieto, A.L.2
-
116
-
-
48049111813
-
Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries
-
[116] Bryngelsson, H., Eskhult, J., Nyholm, L., Edström, K., Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochim. Acta 53 (2008), 7226–7234, 10.1016/j.electacta.2008.05.005.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 7226-7234
-
-
Bryngelsson, H.1
Eskhult, J.2
Nyholm, L.3
Edström, K.4
-
117
-
-
84941965526
-
Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries
-
[117] Allcorn, E., Kim, S., Manthiram, A., Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries. J. Power Sources 299 (2015), 501–508, 10.1016/j.jpowsour.2015.09.020.
-
(2015)
J. Power Sources
, vol.299
, pp. 501-508
-
-
Allcorn, E.1
Kim, S.2
Manthiram, A.3
-
118
-
-
84937039234
-
Thermal stability of Sb and Cu2Sb anodes in lithium-ion batteries
-
[118] Allcorn, E., Manthiram, A., Thermal stability of Sb and Cu2Sb anodes in lithium-ion batteries. J. Electrochem. Soc., 162, 2015, A1778, 10.1149/2.0331509jes.
-
(2015)
J. Electrochem. Soc.
, vol.162
, pp. A1778
-
-
Allcorn, E.1
Manthiram, A.2
-
119
-
-
84862649376
-
Symmetric cell evaluation of the effects of electrolyte additives on Cu2Sb−Al2O3−C nanocomposite anodes
-
[119] Applestone, D., Manthiram, A., Symmetric cell evaluation of the effects of electrolyte additives on Cu2Sb−Al2O3−C nanocomposite anodes. J. Power Sources 217 (2012), 1–5, 10.1016/j.jpowsour.2012.05.119.
-
(2012)
J. Power Sources
, vol.217
, pp. 1-5
-
-
Applestone, D.1
Manthiram, A.2
-
120
-
-
84856746243
-
Cu2Sb–Al2O3–C nanocomposite alloy anodes with exceptional cycle life for lithium ion batteries
-
[120] Applestone, D., Yoon, S., Manthiram, A., Cu2Sb–Al2O3–C nanocomposite alloy anodes with exceptional cycle life for lithium ion batteries. J. Mater. Chem. 22 (2012), 3242–3248, 10.1039/c2jm13479a.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 3242-3248
-
-
Applestone, D.1
Yoon, S.2
Manthiram, A.3
-
121
-
-
84982091504
-
Evaluation of the electrochemical properties of crystalline copper antimonide thin film anodes for lithium ion batteries produced by single step electrodeposition
-
[121] Jackson, E.D., Mosby, J.M., Prieto, A.L., Evaluation of the electrochemical properties of crystalline copper antimonide thin film anodes for lithium ion batteries produced by single step electrodeposition. Electrochim. Acta 214 (2016), 253–264, 10.1016/j.electacta.2016.07.126.
-
(2016)
Electrochim. Acta
, vol.214
, pp. 253-264
-
-
Jackson, E.D.1
Mosby, J.M.2
Prieto, A.L.3
-
122
-
-
84973665424
-
Sb-AlxCy-C nanocomposite alloy anodes for lithium-ion batteries
-
[122] Hung, N.T., Park, S., Bae, J., Yoon, Y.S., Kim, J.H., Son, H.B., Lee, D., Kim, I.T., Hur, J., Sb-AlxCy-C nanocomposite alloy anodes for lithium-ion batteries. Electrochim. Acta 210 (2016), 567–574, 10.1016/j.electacta.2016.05.019.
-
(2016)
Electrochim. Acta
, vol.210
, pp. 567-574
-
-
Hung, N.T.1
Park, S.2
Bae, J.3
Yoon, Y.S.4
Kim, J.H.5
Son, H.B.6
Lee, D.7
Kim, I.T.8
Hur, J.9
-
123
-
-
84921030182
-
SnSb−TiC−C nanocomposite alloy anodes for lithium-ion batteries
-
[123] Leibowitz, J., Allcorn, E., Manthiram, A., SnSb−TiC−C nanocomposite alloy anodes for lithium-ion batteries. J. Power Sources 279 (2015), 549–554, 10.1016/j.jpowsour.2015.01.055.
-
(2015)
J. Power Sources
, vol.279
, pp. 549-554
-
-
Leibowitz, J.1
Allcorn, E.2
Manthiram, A.3
-
124
-
-
84967144469
-
Inexpensive colloidal snsb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries
-
[124] Walter, M., Doswald, S., Kovalenko, M.V., Inexpensive colloidal snsb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 4 (2016), 7053–7059, 10.1039/c5ta10568d.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 7053-7059
-
-
Walter, M.1
Doswald, S.2
Kovalenko, M.V.3
-
125
-
-
84978286031
-
In-situ oxidized copper-based hybrid film on carbon cloth as flexible anode for high performance lithium-ion batteries
-
[125] Cheng, S., Shi, T., Tao, X., Zhong, Y., Huang, Y., Li, J., Liao, G., Tang, Z., In-situ oxidized copper-based hybrid film on carbon cloth as flexible anode for high performance lithium-ion batteries. Electrochim. Acta 212 (2016), 492–499, 10.1016/j.electacta.2016.07.058.
-
(2016)
Electrochim. Acta
, vol.212
, pp. 492-499
-
-
Cheng, S.1
Shi, T.2
Tao, X.3
Zhong, Y.4
Huang, Y.5
Li, J.6
Liao, G.7
Tang, Z.8
-
126
-
-
84964598979
-
Nanoplate and mulberry-like porous shape of CuO as anode materials for secondary lithium ion battery
-
[126] Mohapatra, S., Nair, S.V., Santhanagopalan, D., Rai, A.K., Nanoplate and mulberry-like porous shape of CuO as anode materials for secondary lithium ion battery. Electrochim. Acta 206 (2016), 217–225, 10.1016/j.electacta.2016.04.116.
-
(2016)
Electrochim. Acta
, vol.206
, pp. 217-225
-
-
Mohapatra, S.1
Nair, S.V.2
Santhanagopalan, D.3
Rai, A.K.4
-
127
-
-
0036748966
-
Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li
-
[127] Poizot, P., Laruelle, S., Grugeon, S., Tarascon, J., Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc., 149, 2002, A1212, 10.1149/1.1497981.
-
(2002)
J. Electrochem. Soc.
, vol.149
, pp. A1212
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Tarascon, J.4
-
128
-
-
79960027897
-
Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries
-
[128] Gao, J., Lowe, M.A., Abruña, H.D., Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem. Mater. 23 (2011), 3223–3227, 10.1021/cm201039w.
-
(2011)
Chem. Mater.
, vol.23
, pp. 3223-3227
-
-
Gao, J.1
Lowe, M.A.2
Abruña, H.D.3
-
129
-
-
78049308459
-
Electrode reactions of manganese oxides for secondary lithium batteries
-
[129] Fang, X., Lu, X., Guo, X., Mao, Y., Hu, Y., Wang, J., Wang, Z., Wu, F., Liu, H., Chen, L., Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem. Commun. 12 (2010), 1520–1523, 10.1016/j.elecom.2010.08.023.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1520-1523
-
-
Fang, X.1
Lu, X.2
Guo, X.3
Mao, Y.4
Hu, Y.5
Wang, J.6
Wang, Z.7
Wu, F.8
Liu, H.9
Chen, L.10
-
130
-
-
84962473643
-
Porous micrometer-sized MnO cubes as anode of lithium ion battery
-
[130] Fan, X., Li, S., Lu, L., Porous micrometer-sized MnO cubes as anode of lithium ion battery. Electrochim. Acta 200 (2016), 152–160, 10.1016/j.electacta.2016.03.114.
-
(2016)
Electrochim. Acta
, vol.200
, pp. 152-160
-
-
Fan, X.1
Li, S.2
Lu, L.3
-
131
-
-
84961761223
-
A novel fabrication for manganese monoxide/reduced graphene oxide nanocomposite as high performance anode of lithium ion battery
-
[131] Xia, P., Lin, H., Tu, W., Chen, X., Cai, X., Zheng, X., Xu, M., Li, W., A novel fabrication for manganese monoxide/reduced graphene oxide nanocomposite as high performance anode of lithium ion battery. Electrochim. Acta 198 (2016), 66–76, 10.1016/j.electacta.2016.03.077.
-
(2016)
Electrochim. Acta
, vol.198
, pp. 66-76
-
-
Xia, P.1
Lin, H.2
Tu, W.3
Chen, X.4
Cai, X.5
Zheng, X.6
Xu, M.7
Li, W.8
-
132
-
-
84962259502
-
Nanospherical-Like manganese monoxide/reduced graphene oxide composite synthesized by electron beam radiation as anode material for high-performance lithium-ion batteries
-
[132] Jiang, X., Zhu, X., Liu, X., Xiao, L., Ai, X., Yang, H., Cao, Y., Nanospherical-Like manganese monoxide/reduced graphene oxide composite synthesized by electron beam radiation as anode material for high-performance lithium-ion batteries. Electrochim. Acta 196 (2016), 431–439, 10.1016/j.electacta.2016.02.164.
-
(2016)
Electrochim. Acta
, vol.196
, pp. 431-439
-
-
Jiang, X.1
Zhu, X.2
Liu, X.3
Xiao, L.4
Ai, X.5
Yang, H.6
Cao, Y.7
-
133
-
-
84957537262
-
Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries
-
[133] Tang, X., Sui, G., Cai, Q., Zhong, W., Yang, X., Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries. J. Mater. Chem. A 4 (2016), 2082–2088, 10.1039/c5ta10073a.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 2082-2088
-
-
Tang, X.1
Sui, G.2
Cai, Q.3
Zhong, W.4
Yang, X.5
-
134
-
-
84964556451
-
Effect of Mn3O4 nanoparticle composition and distribution on graphene as a potential hybrid anode material for lithium-ion batteries
-
[134] Ayhan, I.A., Li, Q., Meduri, P., Oh, H., Bhimanapati, G.R., Yang, G., Robinson, J.A., Wang, Q., Effect of Mn3O4 nanoparticle composition and distribution on graphene as a potential hybrid anode material for lithium-ion batteries. RSC Adv. 6 (2016), 33022–33030, 10.1039/c5ra27343a.
-
(2016)
RSC Adv.
, vol.6
, pp. 33022-33030
-
-
Ayhan, I.A.1
Li, Q.2
Meduri, P.3
Oh, H.4
Bhimanapati, G.R.5
Yang, G.6
Robinson, J.A.7
Wang, Q.8
-
135
-
-
84962468903
-
Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery
-
[135] Park, S., Seong, C., Yoo, S., Piao, Y., Porous Mn3O4 nanorod/reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery. Energy 99 (2016), 266–273, 10.1016/j.energy.2016.01.061.
-
(2016)
Energy
, vol.99
, pp. 266-273
-
-
Park, S.1
Seong, C.2
Yoo, S.3
Piao, Y.4
-
136
-
-
84876571802
-
In operando X-ray studies of the conversion reaction in Mn3O4 lithium battery anodes
-
[136] Lowe, M.A., Gao, J., Abruña, H.D., In operando X-ray studies of the conversion reaction in Mn3O4 lithium battery anodes. J. Mater. Chem. A 1 (2013), 2094–2103, 10.1039/c2ta01270g.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2094-2103
-
-
Lowe, M.A.1
Gao, J.2
Abruña, H.D.3
-
137
-
-
84964033430
-
Nickel foil-supported interconnected Fe3O4 nanosheets as anode materials for lithium ion batteries
-
[137] Huang, X., Wu, J., Lin, Y., Guo, R., Nickel foil-supported interconnected Fe3O4 nanosheets as anode materials for lithium ion batteries. Mater. Lett. 175 (2016), 199–202, 10.1016/j.matlet.2016.04.026.
-
(2016)
Mater. Lett.
, vol.175
, pp. 199-202
-
-
Huang, X.1
Wu, J.2
Lin, Y.3
Guo, R.4
-
138
-
-
84961876943
-
Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium-ion batteries with remarkable cycling performance
-
[138] Zhu, K., Zhang, Y., Qiu, H., Meng, Y., Gao, Y., Meng, X., Gao, Z., Chen, G., Wei, Y., Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium-ion batteries with remarkable cycling performance. J. Alloy. Compd. 675 (2016), 399–406, 10.1016/j.jallcom.2016.02.214.
-
(2016)
J. Alloy. Compd.
, vol.675
, pp. 399-406
-
-
Zhu, K.1
Zhang, Y.2
Qiu, H.3
Meng, Y.4
Gao, Y.5
Meng, X.6
Gao, Z.7
Chen, G.8
Wei, Y.9
-
139
-
-
84978525342
-
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
-
[139] Lin, Q., Wang, J., Zhong, Y., Sunarso, J., Tadé, M.O., Li, L., Shao, Z., High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 212 (2016), 179–186, 10.1016/j.electacta.2016.06.135.
-
(2016)
Electrochim. Acta
, vol.212
, pp. 179-186
-
-
Lin, Q.1
Wang, J.2
Zhong, Y.3
Sunarso, J.4
Tadé, M.O.5
Li, L.6
Shao, Z.7
-
140
-
-
79955071407
-
New anode framework for rechargeable lithium batteries
-
[140] Han, J., Huang, Y., Goodenough, J.B., New anode framework for rechargeable lithium batteries. Chem. Mater. 23 (2011), 2027–2029, 10.1021/cm200441h.
-
(2011)
Chem. Mater.
, vol.23
, pp. 2027-2029
-
-
Han, J.1
Huang, Y.2
Goodenough, J.B.3
-
141
-
-
84989817051
-
Cu0.02Ti0.94Nb2.04O7: an advanced anode material for lithium-ion batteries of electric vehicles
-
[141] Yang, C., Lin, C., Lin, S., Chen, Y., Li, J., Cu0.02Ti0.94Nb2.04O7: an advanced anode material for lithium-ion batteries of electric vehicles. J. Power Sources 328 (2016), 336–344, 10.1016/j.jpowsour.2016.08.027.
-
(2016)
J. Power Sources
, vol.328
, pp. 336-344
-
-
Yang, C.1
Lin, C.2
Lin, S.3
Chen, Y.4
Li, J.5
-
142
-
-
84960504227
-
TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries
-
[142] Li, S., Cao, X., Schmidt, C.N., Xu, Q., Uchaker, E., Pei, Y., Cao, G., TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries. J. Mater. Chem. A 4 (2016), 4242–4251, 10.1039/c5ta10510b.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 4242-4251
-
-
Li, S.1
Cao, X.2
Schmidt, C.N.3
Xu, Q.4
Uchaker, E.5
Pei, Y.6
Cao, G.7
-
143
-
-
84963516796
-
Preparation of a TiNb O microsphere using formic acid and wrapping with reduced graphene oxide for anodes in lithium ion batteries
-
[143] Noh, H., Choi, W., Preparation of a TiNb O microsphere using formic acid and wrapping with reduced graphene oxide for anodes in lithium ion batteries. J. Electrochem. Soc., 163, 2016, A1042, 10.1149/2.1181606jes.
-
(2016)
J. Electrochem. Soc.
, vol.163
, pp. A1042
-
-
Noh, H.1
Choi, W.2
-
144
-
-
85008233980
-
One-step synthesis of Li-doped NiO as high-performance anode material for lithium ion batteries
-
[144] Li, Y., Li, X., Wang, Z., Guo, H., Li, T., One-step synthesis of Li-doped NiO as high-performance anode material for lithium ion batteries. Ceram. Int. 42 (2016), 14565–14572, 10.1016/j.ceramint.2016.06.071.
-
(2016)
Ceram. Int.
, vol.42
, pp. 14565-14572
-
-
Li, Y.1
Li, X.2
Wang, Z.3
Guo, H.4
Li, T.5
-
145
-
-
84985905022
-
3D network single-phase Ni0.9Zn0.1O as anode materials for lithium-ion batteries
-
[145] Huang, G., Guo, X., Cao, X., Tian, Q., Sun, H., 3D network single-phase Ni0.9Zn0.1O as anode materials for lithium-ion batteries. Nano Energy 28 (2016), 338–345, 10.1016/j.nanoen.2016.08.050.
-
(2016)
Nano Energy
, vol.28
, pp. 338-345
-
-
Huang, G.1
Guo, X.2
Cao, X.3
Tian, Q.4
Sun, H.5
-
146
-
-
84910680123
-
Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries
-
[146] Palanisamy, K., Kim, Y., Kim, H., Kim, J.M., Yoon, W., Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. J. Power Sources 275 (2015), 351–361, 10.1016/j.jpowsour.2014.11.001.
-
(2015)
J. Power Sources
, vol.275
, pp. 351-361
-
-
Palanisamy, K.1
Kim, Y.2
Kim, H.3
Kim, J.M.4
Yoon, W.5
-
147
-
-
71949124253
-
Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity
-
[147] Shi, Y., Guo, B., Corr, S.A., Shi, Q., Hu, Y., Heier, K.R., Chen, L., Seshadri, R., Stucky, G.D., Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9 (2009), 4215–4220, 10.1021/nl902423a.
-
(2009)
Nano Lett.
, vol.9
, pp. 4215-4220
-
-
Shi, Y.1
Guo, B.2
Corr, S.A.3
Shi, Q.4
Hu, Y.5
Heier, K.R.6
Chen, L.7
Seshadri, R.8
Stucky, G.D.9
-
148
-
-
84863116817
-
Synthesis and lithium storage mechanism of ultrafine MoO2 nanorods
-
[148] Guo, B., Fang, X., Li, B., Shi, Y., Ouyang, C., Hu, Y., Wang, Z., Stucky, G.D., Chen, L., Synthesis and lithium storage mechanism of ultrafine MoO2 nanorods. Chem. Mater. 24 (2012), 457–463, 10.1021/cm202459r.
-
(2012)
Chem. Mater.
, vol.24
, pp. 457-463
-
-
Guo, B.1
Fang, X.2
Li, B.3
Shi, Y.4
Ouyang, C.5
Hu, Y.6
Wang, Z.7
Stucky, G.D.8
Chen, L.9
-
149
-
-
84966431006
-
Highly reversible insertion of lithium into MoO2 as an anode material for lithium ion battery
-
[149] Kim, A., Park, E., Lee, H., Kim, H., Highly reversible insertion of lithium into MoO2 as an anode material for lithium ion battery. J. Alloy. Compd. 681 (2016), 301–306, 10.1016/j.jallcom.2016.04.188.
-
(2016)
J. Alloy. Compd.
, vol.681
, pp. 301-306
-
-
Kim, A.1
Park, E.2
Lee, H.3
Kim, H.4
-
150
-
-
84968750626
-
Electrochemical behavior of submicron Li2MoO3 as anodes in lithium-ion batteries
-
[150] Li, D., He, H., Wu, X., Li, M., Electrochemical behavior of submicron Li2MoO3 as anodes in lithium-ion batteries. J. Alloy. Compd. 682 (2016), 759–765, 10.1016/j.jallcom.2016.05.055.
-
(2016)
J. Alloy. Compd.
, vol.682
, pp. 759-765
-
-
Li, D.1
He, H.2
Wu, X.3
Li, M.4
-
151
-
-
84975106328
-
Novel mesoporous TiO2 spheres as anode material for high-performance lithium-ion batteries
-
[151] Guo, J., Li, J., Huang, Y., Zeng, M., Peng, R., Novel mesoporous TiO2 spheres as anode material for high-performance lithium-ion batteries. Mater. Lett. 181 (2016), 289–291, 10.1016/j.matlet.2016.06.059.
-
(2016)
Mater. Lett.
, vol.181
, pp. 289-291
-
-
Guo, J.1
Li, J.2
Huang, Y.3
Zeng, M.4
Peng, R.5
-
152
-
-
84976520276
-
MOF-derived mesoporous anatase TiO2 as anode material for lithium−ion batteries with high rate capability and long cycle stability
-
[152] Xiu, Z., Alfaruqi, M.H., Gim, J., Song, J., Kim, S., Duong, P.T., Baboo, J.P., Mathew, V., Kim, J., MOF-derived mesoporous anatase TiO2 as anode material for lithium−ion batteries with high rate capability and long cycle stability. J. Alloy. Compd. 674 (2016), 174–178, 10.1016/j.jallcom.2016.02.238.
-
(2016)
J. Alloy. Compd.
, vol.674
, pp. 174-178
-
-
Xiu, Z.1
Alfaruqi, M.H.2
Gim, J.3
Song, J.4
Kim, S.5
Duong, P.T.6
Baboo, J.P.7
Mathew, V.8
Kim, J.9
-
153
-
-
84957559266
-
One-step preparation of nanoarchitectured TiO2 on porous Al as integrated anode for high-performance lithium-ion batteries
-
[153] Du, X., Wang, Q., Feng, T., Chen, X., Li, L., Li, L., Meng, X., Xiong, L., Sun, X., Lu, L., Xu, Y., One-step preparation of nanoarchitectured TiO2 on porous Al as integrated anode for high-performance lithium-ion batteries. Sci. Rep., 6, 2016, 20138, 10.1038/srep20138.
-
(2016)
Sci. Rep.
, vol.6
, pp. 20138
-
-
Du, X.1
Wang, Q.2
Feng, T.3
Chen, X.4
Li, L.5
Li, L.6
Meng, X.7
Xiong, L.8
Sun, X.9
Lu, L.10
Xu, Y.11
-
154
-
-
84971278793
-
TiO2 fibre/particle nanohybrids as efficient anodes for lithium-ion batteries
-
[154] Damien, D., Anjusree, G.S., Nair, A.S., Shaijumon, M.M., TiO2 fibre/particle nanohybrids as efficient anodes for lithium-ion batteries. RSC Adv. 6 (2016), 45802–45808, 10.1039/c6ra04889g.
-
(2016)
RSC Adv.
, vol.6
, pp. 45802-45808
-
-
Damien, D.1
Anjusree, G.S.2
Nair, A.S.3
Shaijumon, M.M.4
-
155
-
-
84953439247
-
Enhancing the performance of MnO by double carbon modification for advanced lithium-ion battery anodes
-
[155] Jiang, X., Yu, W., Wang, H., Xu, H., Liu, X., Ding, Y., Enhancing the performance of MnO by double carbon modification for advanced lithium-ion battery anodes. J. Mater. Chem. A 4 (2016), 920–925, 10.1039/c5ta06095h.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 920-925
-
-
Jiang, X.1
Yu, W.2
Wang, H.3
Xu, H.4
Liu, X.5
Ding, Y.6
-
156
-
-
84863287502
-
Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M=Fe, Mn, Co) anodes in lithium rechargeable batteries
-
[156] Kim, H., Seo, D., Kim, H., Park, I., Hong, J., Park, K., Kang, K., Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M=Fe, Mn, Co) anodes in lithium rechargeable batteries. Chem. Mater. 24 (2012), 720–725, 10.1021/cm2036794.
-
(2012)
Chem. Mater.
, vol.24
, pp. 720-725
-
-
Kim, H.1
Seo, D.2
Kim, H.3
Park, I.4
Hong, J.5
Park, K.6
Kang, K.7
-
157
-
-
84940207438
-
Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries
-
[157] Ge, H., Chen, L., Yuan, W., Zhang, Y., Fan, Q., Osgood, H., Matera, D., Song, X., Wu, G., Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J. Power Sources 297 (2015), 436–441, 10.1016/j.jpowsour.2015.08.038.
-
(2015)
J. Power Sources
, vol.297
, pp. 436-441
-
-
Ge, H.1
Chen, L.2
Yuan, W.3
Zhang, Y.4
Fan, Q.5
Osgood, H.6
Matera, D.7
Song, X.8
Wu, G.9
-
158
-
-
85011384205
-
Facile synthesis of an Al-doped carbon-coated Li4Ti5O12 anode for high-rate lithium-ion batteries
-
[158] Yin, P., Peng, H., Xiao, Y., Lin, T., Lin, J., Facile synthesis of an Al-doped carbon-coated Li4Ti5O12 anode for high-rate lithium-ion batteries. RSC Adv. 6 (2016), 77151–77160, 10.1039/c6ra11353b.
-
(2016)
RSC Adv.
, vol.6
, pp. 77151-77160
-
-
Yin, P.1
Peng, H.2
Xiao, Y.3
Lin, T.4
Lin, J.5
-
159
-
-
71749087101
-
Size effects in the Li4 XTi5O12 spinel
-
[159] Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., Mulder, F.M., Size effects in the Li4 XTi5O12 spinel. J. Am. Chem. Soc. 131 (2009), 17786–17792, 10.1021/ja902423e.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 17786-17792
-
-
Borghols, W.J.H.1
Wagemaker, M.2
Lafont, U.3
Kelder, E.M.4
Mulder, F.M.5
-
160
-
-
84866305833
-
Li4Ti5O12−TiO2 composite anode material for lithium-ion batteries
-
[160] Wang, J., Zhao, H., Yang, Q., Wang, C., Lv, P., Xia, Q., Li4Ti5O12−TiO2 composite anode material for lithium-ion batteries. J. Power Sources 222 (2013), 196–201, 10.1016/j.jpowsour.2012.08.082.
-
(2013)
J. Power Sources
, vol.222
, pp. 196-201
-
-
Wang, J.1
Zhao, H.2
Yang, Q.3
Wang, C.4
Lv, P.5
Xia, Q.6
-
161
-
-
84987861924
-
Electrochemical performance of Cox/Li3Ti4Co1−XCrO12 as anode materials for lithium ion batteries
-
[161] Guo, Q., Chang, C., Zhang, D., Huang, K., Electrochemical performance of Cox/Li3Ti4Co1−XCrO12 as anode materials for lithium ion batteries. J. Alloy. Compd. 692 (2017), 257–264, 10.1016/j.jallcom.2016.09.025.
-
(2017)
J. Alloy. Compd.
, vol.692
, pp. 257-264
-
-
Guo, Q.1
Chang, C.2
Zhang, D.3
Huang, K.4
-
162
-
-
84978805256
-
Synthesis and electrochemical performance of cubic co-doped Li4Ti5O12 anode material for high-performance lithium-ion batteries
-
[162] Zhang, C., Shao, D., Yu, J., Zhang, L., Huang, X., Xu, D., Yu, X., Synthesis and electrochemical performance of cubic co-doped Li4Ti5O12 anode material for high-performance lithium-ion batteries. J. Electroanal. Chem. 776 (2016), 188–192, 10.1016/j.jelechem.2016.07.017.
-
(2016)
J. Electroanal. Chem.
, vol.776
, pp. 188-192
-
-
Zhang, C.1
Shao, D.2
Yu, J.3
Zhang, L.4
Huang, X.5
Xu, D.6
Yu, X.7
-
163
-
-
84975253321
-
Synthesis of carbon-coated Li4Ti5O12 nanosheets as anode materials for high-performance lithium-ion batteries
-
[163] Lin, Z., Zhu, W., Wang, Z., Yang, Y., Lin, Y., Huang, Z., Synthesis of carbon-coated Li4Ti5O12 nanosheets as anode materials for high-performance lithium-ion batteries. J. Alloy. Compd. 687 (2016), 232–239, 10.1016/j.jallcom.2016.04.209.
-
(2016)
J. Alloy. Compd.
, vol.687
, pp. 232-239
-
-
Lin, Z.1
Zhu, W.2
Wang, Z.3
Yang, Y.4
Lin, Y.5
Huang, Z.6
-
164
-
-
84980348254
-
Synthesis of graphitized carbon, nanodiamond and graphene supported Li4Ti5O12 and comparison of their electrochemical performance as anodes for lithium ion batteries
-
[164] Yang, S., Miao, J., Wang, Q., Lu, M., Sun, J., Wen, T., Synthesis of graphitized carbon, nanodiamond and graphene supported Li4Ti5O12 and comparison of their electrochemical performance as anodes for lithium ion batteries. Appl. Surf. Sci. 389 (2016), 428–437, 10.1016/j.apsusc.2016.07.131.
-
(2016)
Appl. Surf. Sci.
, vol.389
, pp. 428-437
-
-
Yang, S.1
Miao, J.2
Wang, Q.3
Lu, M.4
Sun, J.5
Wen, T.6
-
165
-
-
84997503400
-
Effects of TiO2 starting materials on the synthesis of Li2ZnTi3O8 for lithium ion battery anode
-
[165] Wang, L., Meng, Z., Wang, H., Li, X., Zhang, G., Effects of TiO2 starting materials on the synthesis of Li2ZnTi3O8 for lithium ion battery anode. Ceram. Int. 42 (2016), 16872–16881, 10.1016/j.ceramint.2016.07.184.
-
(2016)
Ceram. Int.
, vol.42
, pp. 16872-16881
-
-
Wang, L.1
Meng, Z.2
Wang, H.3
Li, X.4
Zhang, G.5
-
166
-
-
84974666955
-
Pomegranate-like Li3VO4/3D graphene networks nanocomposite as lithium ion battery anode with long cycle life and high-rate capability
-
[166] Jin, X., Lei, B., Wang, J., Chen, Z., Xie, K., Wu, F., Song, Y., Sun, D., Fang, F., Pomegranate-like Li3VO4/3D graphene networks nanocomposite as lithium ion battery anode with long cycle life and high-rate capability. J. Alloy. Compd. 686 (2016), 227–234, 10.1016/j.jallcom.2016.06.018.
-
(2016)
J. Alloy. Compd.
, vol.686
, pp. 227-234
-
-
Jin, X.1
Lei, B.2
Wang, J.3
Chen, Z.4
Xie, K.5
Wu, F.6
Song, Y.7
Sun, D.8
Fang, F.9
-
167
-
-
84969822453
-
A facile spray drying route for mesoporous Li3VO4/C hollow spheres as an anode for long life lithium ion batteries
-
[167] Yang, Y., Li, J., He, X., Wang, J., Sun, D., Zhao, J., A facile spray drying route for mesoporous Li3VO4/C hollow spheres as an anode for long life lithium ion batteries. J. Mater. Chem. A 4 (2016), 7165–7168, 10.1039/c6ta01996j.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 7165-7168
-
-
Yang, Y.1
Li, J.2
He, X.3
Wang, J.4
Sun, D.5
Zhao, J.6
-
168
-
-
84976897913
-
High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries
-
[168] Zhang, Z., Zhao, H., Xia, Q., Allen, J., Zeng, Z., Gao, C., Li, Z., Du, X., Świerczek, K., High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries. Electrochim. Acta 211 (2016), 761–767, 10.1016/j.electacta.2016.06.103.
-
(2016)
Electrochim. Acta
, vol.211
, pp. 761-767
-
-
Zhang, Z.1
Zhao, H.2
Xia, Q.3
Allen, J.4
Zeng, Z.5
Gao, C.6
Li, Z.7
Du, X.8
Świerczek, K.9
-
169
-
-
84949815807
-
Electrochemical characteristics of pyrrhotine as anode material for lithium-ion batteries
-
[169] Zheng, X., Electrochemical characteristics of pyrrhotine as anode material for lithium-ion batteries. J. Alloy. Compd. 661 (2016), 483–489, 10.1016/j.jallcom.2015.11.210.
-
(2016)
J. Alloy. Compd.
, vol.661
, pp. 483-489
-
-
Zheng, X.1
-
170
-
-
84971636093
-
Three-dimensional VS4/graphene hierarchical architecture as high-capacity anode for lithium-ion batteries
-
[170] Li, Q., Chen, Y., He, J., Fu, F., Lin, J., Zhang, W., Three-dimensional VS4/graphene hierarchical architecture as high-capacity anode for lithium-ion batteries. J. Alloy. Compd. 685 (2016), 294–299, 10.1016/j.jallcom.2016.05.293.
-
(2016)
J. Alloy. Compd.
, vol.685
, pp. 294-299
-
-
Li, Q.1
Chen, Y.2
He, J.3
Fu, F.4
Lin, J.5
Zhang, W.6
-
171
-
-
84964355084
-
One-step growth of 3D CoNi2S4 nanorods and cross-linked NiCo2S4 nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries
-
[171] Yang, W., Chen, L., Yang, J., Zhang, X., Fang, C., Chen, Z., Huang, L., Liu, J., Zhou, Y., Zou, Z., One-step growth of 3D CoNi2S4 nanorods and cross-linked NiCo2S4 nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries. Chem. Commun. 52 (2016), 5258–5261, 10.1039/c5cc10368a.
-
(2016)
Chem. Commun.
, vol.52
, pp. 5258-5261
-
-
Yang, W.1
Chen, L.2
Yang, J.3
Zhang, X.4
Fang, C.5
Chen, Z.6
Huang, L.7
Liu, J.8
Zhou, Y.9
Zou, Z.10
-
172
-
-
84962264364
-
Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries
-
[172] Yu, D., Yuan, Y., Zhang, D., Yin, S., Lin, J., Rong, Z., Yang, J., Chen, Y., Guo, S., Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries. Electrochim. Acta 198 (2016), 280–286, 10.1016/j.electacta.2016.01.189.
-
(2016)
Electrochim. Acta
, vol.198
, pp. 280-286
-
-
Yu, D.1
Yuan, Y.2
Zhang, D.3
Yin, S.4
Lin, J.5
Rong, Z.6
Yang, J.7
Chen, Y.8
Guo, S.9
-
173
-
-
84969601938
-
Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries
-
[173] Li, W., Gan, L., Guo, K., Ke, L., Wei, Y., Li, H., Shen, G., Zhai, T., Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale 8 (2016), 8666–8672, 10.1039/c5nr08467a.
-
(2016)
Nanoscale
, vol.8
, pp. 8666-8672
-
-
Li, W.1
Gan, L.2
Guo, K.3
Ke, L.4
Wei, Y.5
Li, H.6
Shen, G.7
Zhai, T.8
-
174
-
-
84948160578
-
Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries
-
[174] Liu, S., Zhang, H., Xu, L., Ma, L., Chen, X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J. Power Sources 304 (2016), 346–353, 10.1016/j.jpowsour.2015.11.056.
-
(2016)
J. Power Sources
, vol.304
, pp. 346-353
-
-
Liu, S.1
Zhang, H.2
Xu, L.3
Ma, L.4
Chen, X.5
-
175
-
-
84970006647
-
Electrochemical synthesis of iron phosphides as anode materials for lithium secondary batteries
-
[175] Chun, Y., Shin, H., Electrochemical synthesis of iron phosphides as anode materials for lithium secondary batteries. Electrochim. Acta 209 (2016), 369–378, 10.1016/j.electacta.2016.05.089.
-
(2016)
Electrochim. Acta
, vol.209
, pp. 369-378
-
-
Chun, Y.1
Shin, H.2
-
176
-
-
0742302984
-
Potassium secondary cell based on prussian blue cathode
-
[176] Eftekhari, A., Potassium secondary cell based on prussian blue cathode. J. Power Sources 126 (2004), 221–228, 10.1016/j.jpowsour.2003.08.007.
-
(2004)
J. Power Sources
, vol.126
, pp. 221-228
-
-
Eftekhari, A.1
-
177
-
-
85011365979
-
Potassium secondary batteries
-
[177] Eftekhari, A., Jian, Z., Ji, X., Potassium secondary batteries. ACS Appl. Mater. Interfaces, 2017, 11566–11569, 10.1021/acsami.6b07989.
-
(2017)
ACS Appl. Mater. Interfaces
, pp. 11566-11569
-
-
Eftekhari, A.1
Jian, Z.2
Ji, X.3
-
178
-
-
84960120949
-
2O with excellent electrochemical properties
-
2O with excellent electrochemical properties. J. Power Sources 314 (2016), 35–38, 10.1016/j.jpowsour.2016.03.011.
-
(2016)
J. Power Sources
, vol.314
, pp. 35-38
-
-
Sun, X.1
Ji, X.2
Zhou, Y.3
Shao, Y.4
Zang, Y.5
Wen, Z.6
Chen, C.7
-
179
-
-
0141975198
-
A new anode material for inorganic-based rechargeable batteries
-
[179] Eftekhari, A., A new anode material for inorganic-based rechargeable batteries. J. Mater. Sci. Lett. 22 (2003), 1251–1253, 10.1023/A:1025449900457.
-
(2003)
J. Mater. Sci. Lett.
, vol.22
, pp. 1251-1253
-
-
Eftekhari, A.1
-
180
-
-
0038216675
-
A high-voltage solid-state secondary cell based on chromium hexacyanometallates
-
[180] Eftekhari, A., A high-voltage solid-state secondary cell based on chromium hexacyanometallates. J. Power Sources 117 (2003), 249–254, 10.1016/S0378-7753(03)00019-3.
-
(2003)
J. Power Sources
, vol.117
, pp. 249-254
-
-
Eftekhari, A.1
-
181
-
-
0026168744
-
Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage
-
[181] Conway, B.E., Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138 (1991), 1539–1548, 10.1149/1.2085829.
-
(1991)
J. Electrochem. Soc.
, vol.138
, pp. 1539-1548
-
-
Conway, B.E.1
-
182
-
-
84903362570
-
Where do batteries end and supercapacitors begin?
-
[182] Simon, P., Gogotsi, Y., Dunn, B., Where do batteries end and supercapacitors begin?. Science 343 (2014), 1210–1211, 10.1126/science.1249625.
-
(2014)
Science
, vol.343
, pp. 1210-1211
-
-
Simon, P.1
Gogotsi, Y.2
Dunn, B.3
-
183
-
-
84930275201
-
Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems
-
[183] Ma, T., Yang, H., Lu, L., Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems. Appl. Energy 153 (2015), 56–62, 10.1016/j.apenergy.2014.12.008.
-
(2015)
Appl. Energy
, vol.153
, pp. 56-62
-
-
Ma, T.1
Yang, H.2
Lu, L.3
-
184
-
-
84896801859
-
Hybrid supercapacitor-battery materials for fast electrochemical charge storage
-
[184] Vlad, A., Singh, N., Rolland, J., Melinte, S., Ajayan, P.M., Gohy, J., Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep., 4, 2014, 10.1038/srep04315.
-
(2014)
Sci. Rep.
, vol.4
-
-
Vlad, A.1
Singh, N.2
Rolland, J.3
Melinte, S.4
Ajayan, P.M.5
Gohy, J.6
-
185
-
-
84951065682
-
High power layered titanate nano-sheets as pseudocapacitive lithium-ion battery anodes
-
[185] Lübke, M., Marchand, P., Brett, D.J., Shearing, P., Gruar, R., Liu, Z., Darr, J.A., High power layered titanate nano-sheets as pseudocapacitive lithium-ion battery anodes. J. Power Sources 305 (2016), 115–121, 10.1016/j.jpowsour.2015.11.060.
-
(2016)
J. Power Sources
, vol.305
, pp. 115-121
-
-
Lübke, M.1
Marchand, P.2
Brett, D.J.3
Shearing, P.4
Gruar, R.5
Liu, Z.6
Darr, J.A.7
-
186
-
-
85027930797
-
Thermally fabricated MoS2-graphene hybrids as high performance anode in lithium ion battery
-
[186] Srivastava, S., Kartick, B., Choudhury, S., Stamm, M., Thermally fabricated MoS2-graphene hybrids as high performance anode in lithium ion battery. Mater. Chem. Phys. 183 (2016), 383–391, 10.1016/j.matchemphys.2016.08.042.
-
(2016)
Mater. Chem. Phys.
, vol.183
, pp. 383-391
-
-
Srivastava, S.1
Kartick, B.2
Choudhury, S.3
Stamm, M.4
-
187
-
-
84975105617
-
Facile synthesis of hierarchical MoS2–carbon microspheres as a robust anode for lithium ion batteries
-
[187] Chen, G., Wang, S., Yi, R., Tan, L., Li, H., Zhou, M., Yan, L., Jiang, Y., Tan, S., Wang, D., Deng, S., Meng, X., Luo, H., Facile synthesis of hierarchical MoS2–carbon microspheres as a robust anode for lithium ion batteries. J. Mater. Chem. A 4 (2016), 9653–9660, 10.1039/c6ta03310e.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 9653-9660
-
-
Chen, G.1
Wang, S.2
Yi, R.3
Tan, L.4
Li, H.5
Zhou, M.6
Yan, L.7
Jiang, Y.8
Tan, S.9
Wang, D.10
Deng, S.11
Meng, X.12
Luo, H.13
-
188
-
-
84973569068
-
Salt-template-assisted synthesis of robust 3D honeycomb-like structured MoS2 and its application as a lithium-ion battery anode
-
[188] Zhou, J., Qin, J., Zhao, N., Shi, C., Liu, E., He, F., Li, J., He, C., Salt-template-assisted synthesis of robust 3D honeycomb-like structured MoS2 and its application as a lithium-ion battery anode. J. Mater. Chem. A 4 (2016), 8734–8741, 10.1039/c6ta02565j.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 8734-8741
-
-
Zhou, J.1
Qin, J.2
Zhao, N.3
Shi, C.4
Liu, E.5
He, F.6
Li, J.7
He, C.8
-
189
-
-
84957538511
-
Mesoporous transition metal dichalcogenide ME2 (M=Mo, W; E=S, Se) with 2-D layered crystallinity as anode materials for lithium ion batteries
-
[189] Lee, Y.Y., Park, G.O., Choi, Y.S., Shon, J.K., Yoon, J., Kim, K.H., Yoon, W., Kim, H., Kim, J.M., Mesoporous transition metal dichalcogenide ME2 (M=Mo, W; E=S, Se) with 2-D layered crystallinity as anode materials for lithium ion batteries. RSC Adv. 6 (2016), 14253–14260, 10.1039/c5ra19799f.
-
(2016)
RSC Adv.
, vol.6
, pp. 14253-14260
-
-
Lee, Y.Y.1
Park, G.O.2
Choi, Y.S.3
Shon, J.K.4
Yoon, J.5
Kim, K.H.6
Yoon, W.7
Kim, H.8
Kim, J.M.9
-
190
-
-
85010686605
-
Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics
-
[190] Eftekhar, A., Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today, 2017, 10.1016/j.apmt.2017.01.006.
-
(2017)
Appl. Mater. Today
-
-
Eftekhar, A.1
-
191
-
-
84961120072
-
Shape dependence of the electrochemical properties of α-Fe2O3 particles as anode materials for lithium ion batteries
-
[191] Lu, J.F., Tsai, Y.Y., Tsai, C.J., Shape dependence of the electrochemical properties of α-Fe2O3 particles as anode materials for lithium ion batteries. RSC Adv. 6 (2016), 26929–26935, 10.1039/c5ra27630f.
-
(2016)
RSC Adv.
, vol.6
, pp. 26929-26935
-
-
Lu, J.F.1
Tsai, Y.Y.2
Tsai, C.J.3
-
192
-
-
84971497587
-
One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance
-
[192] Tong, H., Xu, Y., Cheng, X., Zhang, X., Gao, S., Zhao, H., Huo, L., One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance. Electrochim. Acta 210 (2016), 147–154, 10.1016/j.electacta.2016.05.154.
-
(2016)
Electrochim. Acta
, vol.210
, pp. 147-154
-
-
Tong, H.1
Xu, Y.2
Cheng, X.3
Zhang, X.4
Gao, S.5
Zhao, H.6
Huo, L.7
-
193
-
-
84964682248
-
Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries
-
[193] Gu, X., Wu, F., Lei, B., Wang, J., Chen, Z., Xie, K., Song, Y., Sun, D., Sun, L., Zhou, H., Fang, F., Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries. J. Power Sources 320 (2016), 231–238, 10.1016/j.jpowsour.2016.04.103.
-
(2016)
J. Power Sources
, vol.320
, pp. 231-238
-
-
Gu, X.1
Wu, F.2
Lei, B.3
Wang, J.4
Chen, Z.5
Xie, K.6
Song, Y.7
Sun, D.8
Sun, L.9
Zhou, H.10
Fang, F.11
-
194
-
-
84954437221
-
Hierarchical sandwich-type tungsten trioxide nanoplatelets/graphene anode for high-performance lithium-ion batteries with long cycle life
-
[194] Zeng, F., Ren, Y., Chen, L., Yang, Y., Li, Q., Gu, G., Hierarchical sandwich-type tungsten trioxide nanoplatelets/graphene anode for high-performance lithium-ion batteries with long cycle life. Electrochim. Acta 190 (2016), 964–971, 10.1016/j.electacta.2015.12.109.
-
(2016)
Electrochim. Acta
, vol.190
, pp. 964-971
-
-
Zeng, F.1
Ren, Y.2
Chen, L.3
Yang, Y.4
Li, Q.5
Gu, G.6
-
195
-
-
84966714955
-
Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries
-
[195] Liu, W., Yang, H., Zhao, L., Liu, S., Wang, H., Chen, S., Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochim. Acta 207 (2016), 293–300, 10.1016/j.electacta.2016.05.006.
-
(2016)
Electrochim. Acta
, vol.207
, pp. 293-300
-
-
Liu, W.1
Yang, H.2
Zhao, L.3
Liu, S.4
Wang, H.5
Chen, S.6
-
196
-
-
84956683973
-
Layer-by-layer self-assembly of graphene-like Co3O4 nanosheet/graphene hybrids: towards high-performance anode materials for lithium-ion batteries
-
[196] Yang, Q., Wu, J., Huang, K., Lei, M., Wang, W., Tang, S., Lu, P., Lu, Y., Liu, J., Layer-by-layer self-assembly of graphene-like Co3O4 nanosheet/graphene hybrids: towards high-performance anode materials for lithium-ion batteries. J. Alloy. Compd. 667 (2016), 29–35, 10.1016/j.jallcom.2016.01.136.
-
(2016)
J. Alloy. Compd.
, vol.667
, pp. 29-35
-
-
Yang, Q.1
Wu, J.2
Huang, K.3
Lei, M.4
Wang, W.5
Tang, S.6
Lu, P.7
Lu, Y.8
Liu, J.9
-
197
-
-
84960917327
-
Template-based engineering of carbon-doped Co O hollow nanofibers as anode materials for lithium-ion batteries
-
[197] Yan, C., Chen, G., Zhou, X., Sun, J., Lv, C., Template-based engineering of carbon-doped Co O hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 26 (2016), 1428–1436, 10.1002/adfm.201504695.
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 1428-1436
-
-
Yan, C.1
Chen, G.2
Zhou, X.3
Sun, J.4
Lv, C.5
-
198
-
-
84958979700
-
One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries
-
[198] Zhang, L., Mu, J., Wang, Z., Li, G., Zhang, Y., He, Y., One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries. J. Alloy. Compd. 671 (2016), 60–65, 10.1016/j.jallcom.2016.02.038.
-
(2016)
J. Alloy. Compd.
, vol.671
, pp. 60-65
-
-
Zhang, L.1
Mu, J.2
Wang, Z.3
Li, G.4
Zhang, Y.5
He, Y.6
-
199
-
-
84957604132
-
Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials
-
[199] Mujtaba, J., Sun, H., Huang, G., Mølhave, K., Liu, Y., Zhao, Y., Wang, X., Xu, S., Zhu, J., Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials. Sci. Rep., 6, 2016, 20592, 10.1038/srep20592.
-
(2016)
Sci. Rep.
, vol.6
, pp. 20592
-
-
Mujtaba, J.1
Sun, H.2
Huang, G.3
Mølhave, K.4
Liu, Y.5
Zhao, Y.6
Wang, X.7
Xu, S.8
Zhu, J.9
-
200
-
-
84974829740
-
Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode
-
[200] Wan, H., Peng, G., Yao, X., Yang, J., Cui, P., Xu, X., Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Mater. 4 (2016), 59–65, 10.1016/j.ensm.2016.02.004.
-
(2016)
Energy Storage Mater.
, vol.4
, pp. 59-65
-
-
Wan, H.1
Peng, G.2
Yao, X.3
Yang, J.4
Cui, P.5
Xu, X.6
-
201
-
-
84946207627
-
A new insight into the LiTiOPO4 as an anode material for lithium ion batteries
-
[201] Fu, Y., Ming, H., Zhao, S., Guo, J., Chen, M., Zhou, Q., Zheng, J., A new insight into the LiTiOPO4 as an anode material for lithium ion batteries. Electrochim. Acta 185 (2015), 211–217, 10.1016/j.electacta.2015.10.124.
-
(2015)
Electrochim. Acta
, vol.185
, pp. 211-217
-
-
Fu, Y.1
Ming, H.2
Zhao, S.3
Guo, J.4
Chen, M.5
Zhou, Q.6
Zheng, J.7
-
202
-
-
84888206198
-
Origin of additional capacities in metal oxide lithium-ion battery electrodes
-
[202] Hu, Y., Liu, Z., Nam, K., Borkiewicz, O.J., Cheng, J., Hua, X., Dunstan, M.T., Yu, X., Wiaderek, K.M., Du, L., Chapman, K.W., Chupas, P.J., Yang, X., Grey, C.P., Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12 (2013), 1130–1136, 10.1038/nmat3784.
-
(2013)
Nat. Mater.
, vol.12
, pp. 1130-1136
-
-
Hu, Y.1
Liu, Z.2
Nam, K.3
Borkiewicz, O.J.4
Cheng, J.5
Hua, X.6
Dunstan, M.T.7
Yu, X.8
Wiaderek, K.M.9
Du, L.10
Chapman, K.W.11
Chupas, P.J.12
Yang, X.13
Grey, C.P.14
-
203
-
-
84988714304
-
Synthesis of SnFe2O4 as a novel anode material for lithium-ion batteries
-
[203] Zhou, F., Sun, Y., Liu, S., Nan, J., Synthesis of SnFe2O4 as a novel anode material for lithium-ion batteries. Solid State Ion. 296 (2016), 163–167, 10.1016/j.ssi.2016.09.019.
-
(2016)
Solid State Ion.
, vol.296
, pp. 163-167
-
-
Zhou, F.1
Sun, Y.2
Liu, S.3
Nan, J.4
-
204
-
-
84963808584
-
Hierarchical porous ZnMn2O4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries
-
[204] Rong, H., Xie, G., Cheng, S., Zhen, Z., Jiang, Z., Huang, J., Jiang, Y., Chen, B., Jiang, Z., Hierarchical porous ZnMn2O4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries. J. Alloy. Compd. 679 (2016), 231–238, 10.1016/j.jallcom.2016.04.056.
-
(2016)
J. Alloy. Compd.
, vol.679
, pp. 231-238
-
-
Rong, H.1
Xie, G.2
Cheng, S.3
Zhen, Z.4
Jiang, Z.5
Huang, J.6
Jiang, Y.7
Chen, B.8
Jiang, Z.9
-
205
-
-
84978924831
-
Hierarchical porous ZnMn2O4 microspheres as a high-performance anode for lithium-ion batteries
-
[205] Fan, B., Hu, A., Chen, X., Zhang, S., Tang, Q., Wang, J., Deng, W., Liu, Z., Xiao, K., Hierarchical porous ZnMn2O4 microspheres as a high-performance anode for lithium-ion batteries. Electrochim. Acta 213 (2016), 37–45, 10.1016/j.electacta.2016.07.030.
-
(2016)
Electrochim. Acta
, vol.213
, pp. 37-45
-
-
Fan, B.1
Hu, A.2
Chen, X.3
Zhang, S.4
Tang, Q.5
Wang, J.6
Deng, W.7
Liu, Z.8
Xiao, K.9
-
206
-
-
84959170541
-
Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery
-
[206] Chen, X., Zhang, Y., Lin, H., Xia, P., Cai, X., Li, X., Li, X., Li, W., Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J. Power Sources 312 (2016), 137–145, 10.1016/j.jpowsour.2016.02.056.
-
(2016)
J. Power Sources
, vol.312
, pp. 137-145
-
-
Chen, X.1
Zhang, Y.2
Lin, H.3
Xia, P.4
Cai, X.5
Li, X.6
Li, X.7
Li, W.8
-
207
-
-
84961707406
-
Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries
-
[207] Zhang, T., Gao, Y., Yue, H., Qiu, H., Guo, Z., Wei, Y., Wang, C., Chen, G., Zhang, D., Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries. Electrochim. Acta 198 (2016), 84–90, 10.1016/j.electacta.2016.03.081.
-
(2016)
Electrochim. Acta
, vol.198
, pp. 84-90
-
-
Zhang, T.1
Gao, Y.2
Yue, H.3
Qiu, H.4
Guo, Z.5
Wei, Y.6
Wang, C.7
Chen, G.8
Zhang, D.9
-
208
-
-
84962548927
-
Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries
-
[208] Zhao, R., Li, Q., Wang, C., Yin, L., Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries. Electrochim. Acta 197 (2016), 58–67, 10.1016/j.electacta.2016.03.047.
-
(2016)
Electrochim. Acta
, vol.197
, pp. 58-67
-
-
Zhao, R.1
Li, Q.2
Wang, C.3
Yin, L.4
-
209
-
-
84943328875
-
Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries
-
[209] Yin, Y., Huo, N., Liu, W., Shi, Z., Wang, Q., Ding, Y., Zhang, J., Yang, S., Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries. Scr. Mater. 110 (2016), 92–95, 10.1016/j.scriptamat.2015.08.009.
-
(2016)
Scr. Mater.
, vol.110
, pp. 92-95
-
-
Yin, Y.1
Huo, N.2
Liu, W.3
Shi, Z.4
Wang, Q.5
Ding, Y.6
Zhang, J.7
Yang, S.8
-
210
-
-
84995581941
-
Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications
-
[210] Narsimulu, D., Rao, B.N., Venkateswarlu, M., Srinadhu, E., Satyanarayana, N., Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceram. Int. 42 (2016), 16789–16797, 10.1016/j.ceramint.2016.07.168.
-
(2016)
Ceram. Int.
, vol.42
, pp. 16789-16797
-
-
Narsimulu, D.1
Rao, B.N.2
Venkateswarlu, M.3
Srinadhu, E.4
Satyanarayana, N.5
-
211
-
-
84977615358
-
Facile synthesis of copper-manganese spinel anodes with high capacity and cycling performance for lithium-ion batteries
-
[211] Sun, W., Liu, J., Wu, H., Yue, X., Wang, Z., Rooney, D., Feng, J., Sun, K., Facile synthesis of copper-manganese spinel anodes with high capacity and cycling performance for lithium-ion batteries. Mater. Lett. 182 (2016), 147–150, 10.1016/j.matlet.2016.06.089.
-
(2016)
Mater. Lett.
, vol.182
, pp. 147-150
-
-
Sun, W.1
Liu, J.2
Wu, H.3
Yue, X.4
Wang, Z.5
Rooney, D.6
Feng, J.7
Sun, K.8
-
212
-
-
84983507842
-
Liquid-solid-solution assembly of CoFe2O4/graphene nanocomposite as a high-performance lithium-ion battery anode
-
[212] Zhu, Y., Lv, X., Zhang, L., Guo, X., Liu, D., Chen, J., Ji, J., Liquid-solid-solution assembly of CoFe2O4/graphene nanocomposite as a high-performance lithium-ion battery anode. Electrochim. Acta 215 (2016), 247–252, 10.1016/j.electacta.2016.08.057.
-
(2016)
Electrochim. Acta
, vol.215
, pp. 247-252
-
-
Zhu, Y.1
Lv, X.2
Zhang, L.3
Guo, X.4
Liu, D.5
Chen, J.6
Ji, J.7
-
213
-
-
84976870077
-
Hierarchical MnCo2O4 constructed by mesoporous nanosheets@polypyrrole composites as anodes for lithium ion batteries
-
[213] Jin, R., Meng, Y., Ma, Y., Li, H., Sun, Y., Chen, G., Hierarchical MnCo2O4 constructed by mesoporous nanosheets@polypyrrole composites as anodes for lithium ion batteries. Electrochim. Acta 209 (2016), 163–170, 10.1016/j.electacta.2016.05.072.
-
(2016)
Electrochim. Acta
, vol.209
, pp. 163-170
-
-
Jin, R.1
Meng, Y.2
Ma, Y.3
Li, H.4
Sun, Y.5
Chen, G.6
-
214
-
-
84955211984
-
Cubic CuCo2O4 microspheres with FeO nanowires link as free-standing anode for high-performance lithium ion batteries
-
[214] Cheng, J., Li, X., Wang, Z., Guo, H., Peng, W., Hu, Q., Cubic CuCo2O4 microspheres with FeO nanowires link as free-standing anode for high-performance lithium ion batteries. Ceram. Int. 42 (2016), 2871–2875, 10.1016/j.ceramint.2015.09.153.
-
(2016)
Ceram. Int.
, vol.42
, pp. 2871-2875
-
-
Cheng, J.1
Li, X.2
Wang, Z.3
Guo, H.4
Peng, W.5
Hu, Q.6
-
215
-
-
84962251089
-
Porous CoFe2O4 nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion batteries
-
[215] Zhao, S., Guo, J., Jiang, F., Su, Q., Du, G., Porous CoFe2O4 nanowire arrays on carbon cloth as binder-free anodes for flexible lithium-ion batteries. Mater. Res. Bull. 79 (2016), 22–28, 10.1016/j.materresbull.2016.02.041.
-
(2016)
Mater. Res. Bull.
, vol.79
, pp. 22-28
-
-
Zhao, S.1
Guo, J.2
Jiang, F.3
Su, Q.4
Du, G.5
-
216
-
-
84960923663
-
Single-spinneret electrospinning fabrication of CoFe2O4 nanotubes as high-performance anode materials for lithium-ion batteries
-
[216] Wang, H., Liu, D., Li, Y., Duan, Q., Single-spinneret electrospinning fabrication of CoFe2O4 nanotubes as high-performance anode materials for lithium-ion batteries. Mater. Lett. 2016 (2016), 64–67, 10.1016/j.matlet.2016.02.133.
-
(2016)
Mater. Lett.
, vol.2016
, pp. 64-67
-
-
Wang, H.1
Liu, D.2
Li, Y.3
Duan, Q.4
-
217
-
-
84988484556
-
There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries
-
[217] Yang, J., Xi, L., Tang, J., Chen, F., Wu, L., Zhou, X., There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries. Electrochim. Acta 217 (2016), 274–282, 10.1016/j.electacta.2016.09.086.
-
(2016)
Electrochim. Acta
, vol.217
, pp. 274-282
-
-
Yang, J.1
Xi, L.2
Tang, J.3
Chen, F.4
Wu, L.5
Zhou, X.6
-
218
-
-
84983472626
-
Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries
-
[218] Wang, K., Shi, Y., Li, H., Wang, H., Li, X., Sun, H., Wu, X., Xie, H., Zhang, J., Wang, J., Assembly of MnCO3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries. Electrochim. Acta 215 (2016), 267–275, 10.1016/j.electacta.2016.08.085.
-
(2016)
Electrochim. Acta
, vol.215
, pp. 267-275
-
-
Wang, K.1
Shi, Y.2
Li, H.3
Wang, H.4
Li, X.5
Sun, H.6
Wu, X.7
Xie, H.8
Zhang, J.9
Wang, J.10
-
219
-
-
84959234540
-
A facile synthesis of core-shell structured ZnO@C nanosphere and their high performance for lithium ion battery anode
-
[219] Liu, Y., Li, Y., Zhong, M., Hu, Y., Hu, P., Zhu, M., Li, W., Li, Y., A facile synthesis of core-shell structured ZnO@C nanosphere and their high performance for lithium ion battery anode. Mater. Lett. 2016 (2016), 244–247, 10.1016/j.matlet.2016.02.112.
-
(2016)
Mater. Lett.
, vol.2016
, pp. 244-247
-
-
Liu, Y.1
Li, Y.2
Zhong, M.3
Hu, Y.4
Hu, P.5
Zhu, M.6
Li, W.7
Li, Y.8
-
220
-
-
84957831230
-
NaLaTi2O6 nanosheet as a potential anode material for lithium ion batteries
-
[220] Geng, Q., Cao, L., Kong, X., Xu, Z., Huang, J., Li, J., Cheng, Y., NaLaTi2O6 nanosheet as a potential anode material for lithium ion batteries. Mater. Sci. Eng. B 207 (2016), 13–17, 10.1016/j.mseb.2016.01.007.
-
(2016)
Mater. Sci. Eng. B
, vol.207
, pp. 13-17
-
-
Geng, Q.1
Cao, L.2
Kong, X.3
Xu, Z.4
Huang, J.5
Li, J.6
Cheng, Y.7
-
221
-
-
84962833990
-
Reduced graphene oxide anchored with MnO2 nanorods as anode for high rate and long cycle lithium ion batteries
-
[221] Ma, Z., Zhao, T., Reduced graphene oxide anchored with MnO2 nanorods as anode for high rate and long cycle lithium ion batteries. Electrochim. Acta 201 (2016), 165–171, 10.1016/j.electacta.2016.03.200.
-
(2016)
Electrochim. Acta
, vol.201
, pp. 165-171
-
-
Ma, Z.1
Zhao, T.2
-
222
-
-
84963705002
-
The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries
-
[222] Wang, T., Shi, S., Kong, F., Yang, G., Qian, B., Yin, F., The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries. Electrochim. Acta 203 (2016), 206–212, 10.1016/j.electacta.2016.04.045.
-
(2016)
Electrochim. Acta
, vol.203
, pp. 206-212
-
-
Wang, T.1
Shi, S.2
Kong, F.3
Yang, G.4
Qian, B.5
Yin, F.6
-
223
-
-
84901795759
-
Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances
-
[223] Lin, C., Fan, X., Xin, Y., Cheng, F., Lai, M.O., Zhou, H., Lu, L., Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Nanoscale 6 (2014), 6651–6660, 10.1039/c4nr00960f.
-
(2014)
Nanoscale
, vol.6
, pp. 6651-6660
-
-
Lin, C.1
Fan, X.2
Xin, Y.3
Cheng, F.4
Lai, M.O.5
Zhou, H.6
Lu, L.7
-
224
-
-
84973103334
-
Synthesis of porous nickel networks supported metal oxide nanowire arrays as binder-free anode for lithium-ion batteries
-
[224] Xiong, Q., Qin, H., Chi, H., Ji, Z., Synthesis of porous nickel networks supported metal oxide nanowire arrays as binder-free anode for lithium-ion batteries. J. Alloy. Compd. 685 (2016), 15–21, 10.1016/j.jallcom.2016.05.258.
-
(2016)
J. Alloy. Compd.
, vol.685
, pp. 15-21
-
-
Xiong, Q.1
Qin, H.2
Chi, H.3
Ji, Z.4
-
225
-
-
84983752530
-
Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials
-
[225] Zhao, B., Wang, Z., Gao, Y., Chen, L., Lu, M., Jiao, Z., Jiang, Y., Ding, Y., Cheng, L., Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Appl. Surf. Sci. 390 (2016), 209–215, 10.1016/j.apsusc.2016.08.078.
-
(2016)
Appl. Surf. Sci.
, vol.390
, pp. 209-215
-
-
Zhao, B.1
Wang, Z.2
Gao, Y.3
Chen, L.4
Lu, M.5
Jiao, Z.6
Jiang, Y.7
Ding, Y.8
Cheng, L.9
-
226
-
-
1842426354
-
Thermodynamics of lithium intercalation into graphites and disordered carbons
-
[226] Reynier, Y.F., Yazami, R., Fultz, B., Thermodynamics of lithium intercalation into graphites and disordered carbons. J. Electrochem. Soc., 151, 2004, A422, 10.1149/1.1646152.
-
(2004)
J. Electrochem. Soc.
, vol.151
, pp. A422
-
-
Reynier, Y.F.1
Yazami, R.2
Fultz, B.3
-
227
-
-
77957724344
-
Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations
-
[227] Persson, K., Hinuma, Y., Meng, Y.S., Van der Ven, A., Ceder, G., Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations. Phys. Rev. B, 82, 2010, 10.1103/PhysRevB.82.125416.
-
(2010)
Phys. Rev. B
, vol.82
-
-
Persson, K.1
Hinuma, Y.2
Meng, Y.S.3
Van der Ven, A.4
Ceder, G.5
-
228
-
-
85010687811
-
The rise of lithium–selenium batteries
-
[228] Eftekhari, A., The rise of lithium–selenium batteries. Sustain. Energy Fuels, 2017, 10.1039/C6SE00094K.
-
(2017)
Sustain. Energy Fuels
-
-
Eftekhari, A.1
-
229
-
-
84985943073
-
PbLi2Ti6O14: a novel high-rate long-life anode material for rechargeable lithium-ion batteries
-
[229] Li, P., Qian, S., Yu, H., Yan, L., Lin, X., Yang, K., Long, N., Shui, M., Shu, J., PbLi2Ti6O14: a novel high-rate long-life anode material for rechargeable lithium-ion batteries. J. Power Sources 330 (2016), 45–54, 10.1016/j.jpowsour.2016.08.138.
-
(2016)
J. Power Sources
, vol.330
, pp. 45-54
-
-
Li, P.1
Qian, S.2
Yu, H.3
Yan, L.4
Lin, X.5
Yang, K.6
Long, N.7
Shui, M.8
Shu, J.9
-
230
-
-
33947257362
-
Fluoride based electrode materials for advanced energy storage devices
-
[230] Amatucci, G.G., Pereira, N., Fluoride based electrode materials for advanced energy storage devices. J. Fluor. Chem. 128 (2007), 243–262, 10.1016/j.jfluchem.2006.11.016.
-
(2007)
J. Fluor. Chem.
, vol.128
, pp. 243-262
-
-
Amatucci, G.G.1
Pereira, N.2
-
231
-
-
84987824787
-
Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance
-
[231] Yue, X., Sun, W., Zhang, J., Wang, F., Yang, Y., Lu, C., Wang, Z., Rooney, D., Sun, K., Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance. J. Power Sources 331 (2016), 10–15, 10.1016/j.jpowsour.2016.09.029.
-
(2016)
J. Power Sources
, vol.331
, pp. 10-15
-
-
Yue, X.1
Sun, W.2
Zhang, J.3
Wang, F.4
Yang, Y.5
Lu, C.6
Wang, Z.7
Rooney, D.8
Sun, K.9
-
232
-
-
84979903064
-
Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries
-
[232] Xiong, Q., Chi, H., Zhang, J., Tu, J., Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. J. Alloy. Compd. 688 (2016), 729–735, 10.1016/j.jallcom.2016.07.265.
-
(2016)
J. Alloy. Compd.
, vol.688
, pp. 729-735
-
-
Xiong, Q.1
Chi, H.2
Zhang, J.3
Tu, J.4
-
233
-
-
84987959344
-
Zn2SnO4/graphene composites as anode materials for high performance lithium-ion batteries
-
[233] Qin, L., Liang, S., Tan, X., Pan, A., Zn2SnO4/graphene composites as anode materials for high performance lithium-ion batteries. J. Alloy. Compd. 692 (2017), 124–130, 10.1016/j.jallcom.2016.09.015.
-
(2017)
J. Alloy. Compd.
, vol.692
, pp. 124-130
-
-
Qin, L.1
Liang, S.2
Tan, X.3
Pan, A.4
-
234
-
-
84979663951
-
MoO2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery
-
[234] Zhang, X., Hou, Z., Li, X., Liang, J., Zhu, Y., Qian, Y., MoO2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. Electrochim. Acta 213 (2016), 416–422, 10.1016/j.electacta.2016.07.134.
-
(2016)
Electrochim. Acta
, vol.213
, pp. 416-422
-
-
Zhang, X.1
Hou, Z.2
Li, X.3
Liang, J.4
Zhu, Y.5
Qian, Y.6
-
235
-
-
84964355145
-
Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries
-
[235] Deng, T., Zhou, X., Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries. Mater. Lett. 176 (2016), 151–154, 10.1016/j.matlet.2016.04.073.
-
(2016)
Mater. Lett.
, vol.176
, pp. 151-154
-
-
Deng, T.1
Zhou, X.2
-
236
-
-
84974555477
-
Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high performance lithium-ion battery anodes
-
[236] Dou, P., Cao, Z., Zheng, J., Wang, C., Xu, X., Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high performance lithium-ion battery anodes. J. Alloy. Compd. 685 (2016), 690–698, 10.1016/j.jallcom.2016.05.218.
-
(2016)
J. Alloy. Compd.
, vol.685
, pp. 690-698
-
-
Dou, P.1
Cao, Z.2
Zheng, J.3
Wang, C.4
Xu, X.5
-
237
-
-
84994757583
-
Lithium ion battery anodes using Si-Fe based nanocomposite structures
-
[237] Fukata, N., Mitome, M., Bando, Y., Wu, W., Wang, Z.L., Lithium ion battery anodes using Si-Fe based nanocomposite structures. Nano Energy 26 (2016), 37–42, 10.1016/j.nanoen.2016.05.007.
-
(2016)
Nano Energy
, vol.26
, pp. 37-42
-
-
Fukata, N.1
Mitome, M.2
Bando, Y.3
Wu, W.4
Wang, Z.L.5
-
238
-
-
84919932239
-
Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries
-
[238] Fang, S., Shen, L., Zheng, H., Zhang, X., Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries. J. Mater. Chem. A 3 (2015), 1498–1503, 10.1039/c4ta04350b.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 1498-1503
-
-
Fang, S.1
Shen, L.2
Zheng, H.3
Zhang, X.4
-
239
-
-
84949443227
-
SiO nanodandelion by laser ablation for anode of lithium-ion battery
-
[239] Luo, X., Zhang, H., Pan, W., Gong, J., Khalid, B., Zhong, M., Wu, H., SiO nanodandelion by laser ablation for anode of lithium-ion battery. Small 11 (2015), 6009–6012, 10.1002/smll.201502539.
-
(2015)
Small
, vol.11
, pp. 6009-6012
-
-
Luo, X.1
Zhang, H.2
Pan, W.3
Gong, J.4
Khalid, B.5
Zhong, M.6
Wu, H.7
-
240
-
-
84971296060
-
Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries
-
[240] Jiang, Q., Zhang, Z., Yin, S., Guo, Z., Wang, S., Feng, C., Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Appl. Surf. Sci. 379 (2016), 73–82, 10.1016/j.apsusc.2016.03.204.
-
(2016)
Appl. Surf. Sci.
, vol.379
, pp. 73-82
-
-
Jiang, Q.1
Zhang, Z.2
Yin, S.3
Guo, Z.4
Wang, S.5
Feng, C.6
-
241
-
-
84976537064
-
Investigation of a porous NiSi2/Si composite anode material used for lithium-ion batteries by X-ray absorption spectroscopy
-
[241] Zhou, D., Jia, H., Rana, J., Placke, T., Klöpsch, R., Schumacher, G., Winter, M., Banhart, J., Investigation of a porous NiSi2/Si composite anode material used for lithium-ion batteries by X-ray absorption spectroscopy. J. Power Sources 324 (2016), 830–835, 10.1016/j.jpowsour.2016.05.137.
-
(2016)
J. Power Sources
, vol.324
, pp. 830-835
-
-
Zhou, D.1
Jia, H.2
Rana, J.3
Placke, T.4
Klöpsch, R.5
Schumacher, G.6
Winter, M.7
Banhart, J.8
-
242
-
-
84986880001
-
One-step synthesis of hollow structured Si/C composites based on expandable microspheres as anodes for lithium ion batteries
-
[242] Li, Y., Chang, B., Li, T., Kang, L., Xu, S., Zhang, D., Xie, L., Liang, W., One-step synthesis of hollow structured Si/C composites based on expandable microspheres as anodes for lithium ion batteries. Electrochem. Commun. 72 (2016), 69–73, 10.1016/j.elecom.2016.09.006.
-
(2016)
Electrochem. Commun.
, vol.72
, pp. 69-73
-
-
Li, Y.1
Chang, B.2
Li, T.3
Kang, L.4
Xu, S.5
Zhang, D.6
Xie, L.7
Liang, W.8
-
243
-
-
84987984858
-
Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries
-
[243] Feng, M., Wang, S., Yu, Y., Feng, Q., Yang, J., Zhang, B., Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries. Appl. Surf. Sci. 392 (2017), 27–35, 10.1016/j.apsusc.2016.09.017.
-
(2017)
Appl. Surf. Sci.
, vol.392
, pp. 27-35
-
-
Feng, M.1
Wang, S.2
Yu, Y.3
Feng, Q.4
Yang, J.5
Zhang, B.6
-
244
-
-
84989965012
-
Three-dimensional core-shell Fe2O3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries
-
[244] Wang, X., Zhang, M., Liu, E., He, F., Shi, C., He, C., Li, J., Zhao, N., Three-dimensional core-shell Fe2O3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries. Appl. Surf. Sci. 390 (2016), 350–356, 10.1016/j.apsusc.2016.08.112.
-
(2016)
Appl. Surf. Sci.
, vol.390
, pp. 350-356
-
-
Wang, X.1
Zhang, M.2
Liu, E.3
He, F.4
Shi, C.5
He, C.6
Li, J.7
Zhao, N.8
-
245
-
-
84984876730
-
Pomegranate-Like silicon/nitrogen-doped graphene microspheres as superior-capacity anode for lithium-ion batteries
-
[245] Lin, J., He, J., Chen, Y., Li, Q., Yu, B., Xu, C., Zhang, W., Pomegranate-Like silicon/nitrogen-doped graphene microspheres as superior-capacity anode for lithium-ion batteries. Electrochim. Acta 215 (2016), 667–673, 10.1016/j.electacta.2016.08.147.
-
(2016)
Electrochim. Acta
, vol.215
, pp. 667-673
-
-
Lin, J.1
He, J.2
Chen, Y.3
Li, Q.4
Yu, B.5
Xu, C.6
Zhang, W.7
-
246
-
-
84983340454
-
Characteristics of potassium iron oxide for high-powered anode materials for lithium-ion batteries
-
[246] Jung, D., Jeong, J., Oh, E., Characteristics of potassium iron oxide for high-powered anode materials for lithium-ion batteries. J. Alloy. Compd. 690 (2017), 42–50, 10.1016/j.jallcom.2016.08.107.
-
(2017)
J. Alloy. Compd.
, vol.690
, pp. 42-50
-
-
Jung, D.1
Jeong, J.2
Oh, E.3
-
247
-
-
84989937031
-
Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries
-
[247] Zhang, Y., Wei, Y., Li, H., Zhao, Y., Yin, F., Wang, X., Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries. Mater. Lett. 184 (2016), 235–238, 10.1016/j.matlet.2016.08.017.
-
(2016)
Mater. Lett.
, vol.184
, pp. 235-238
-
-
Zhang, Y.1
Wei, Y.2
Li, H.3
Zhao, Y.4
Yin, F.5
Wang, X.6
-
248
-
-
84950311825
-
SnSb–ZnO composite materials as high performance anodes for lithium-ion batteries
-
[248] Li, Y., Zhang, W., Cai, H., Wang, J., Ren, X., Zhang, P., SnSb–ZnO composite materials as high performance anodes for lithium-ion batteries. RSC Adv. 5 (2015), 105643–105650, 10.1039/c5ra21449a.
-
(2015)
RSC Adv.
, vol.5
, pp. 105643-105650
-
-
Li, Y.1
Zhang, W.2
Cai, H.3
Wang, J.4
Ren, X.5
Zhang, P.6
-
249
-
-
84964579445
-
Room-temperature synthesis of ultrathin Mn3O4 nanosheets as anode materials for lithium-ion batteries
-
[249] Zhen, M., Zhang, Z., Ren, Q., Liu, L., Room-temperature synthesis of ultrathin Mn3O4 nanosheets as anode materials for lithium-ion batteries. Mater. Lett. 177 (2016), 21–24, 10.1016/j.matlet.2016.04.156.
-
(2016)
Mater. Lett.
, vol.177
, pp. 21-24
-
-
Zhen, M.1
Zhang, Z.2
Ren, Q.3
Liu, L.4
-
250
-
-
84950294933
-
A nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries
-
[250] Yuan, T., He, Y., Zhang, W., Ma, Z., A nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries. Chem. Commun. 52 (2016), 112–115, 10.1039/c5cc06964e.
-
(2016)
Chem. Commun.
, vol.52
, pp. 112-115
-
-
Yuan, T.1
He, Y.2
Zhang, W.3
Ma, Z.4
-
251
-
-
84978924086
-
Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery
-
[251] Zhang, L., He, G., Lei, S., Qi, G., Jiu, H., Wang, J., Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery. J. Power Sources 326 (2016), 505–513, 10.1016/j.jpowsour.2016.07.021.
-
(2016)
J. Power Sources
, vol.326
, pp. 505-513
-
-
Zhang, L.1
He, G.2
Lei, S.3
Qi, G.4
Jiu, H.5
Wang, J.6
-
252
-
-
84969255708
-
Electrospun SiO2/C composite fibers as durable anode materials for lithium ion batteries
-
[252] Ren, Y., Yang, B., Wei, H., Ding, J., Electrospun SiO2/C composite fibers as durable anode materials for lithium ion batteries. Solid State Ion. 292 (2016), 27–31, 10.1016/j.ssi.2016.05.002.
-
(2016)
Solid State Ion.
, vol.292
, pp. 27-31
-
-
Ren, Y.1
Yang, B.2
Wei, H.3
Ding, J.4
-
253
-
-
84989154747
-
Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries
-
[253] Zhang, M., Qiu, Y., Han, Y., Guo, Y., Cheng, F., Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries. J. Power Sources 322 (2016), 163–168, 10.1016/j.jpowsour.2016.04.049.
-
(2016)
J. Power Sources
, vol.322
, pp. 163-168
-
-
Zhang, M.1
Qiu, Y.2
Han, Y.3
Guo, Y.4
Cheng, F.5
-
254
-
-
84975045691
-
Cu1.5Mn1.5O4 spinel: a novel anode material for lithium-ion batteries
-
[254] Quan, J., Mei, L., Ma, Z., Huang, J., Li, D., Cu1.5Mn1.5O4 spinel: a novel anode material for lithium-ion batteries. RSC Adv. 6 (2016), 55786–55791, 10.1039/c6ra08308k.
-
(2016)
RSC Adv.
, vol.6
, pp. 55786-55791
-
-
Quan, J.1
Mei, L.2
Ma, Z.3
Huang, J.4
Li, D.5
-
255
-
-
84976315950
-
Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries
-
[255] Wang, L., Guo, H., Wang, W., Teng, K., Xu, Z., Chen, C., Li, C., Yang, C., Hu, C., Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 211 (2016), 499–506, 10.1016/j.electacta.2016.06.052.
-
(2016)
Electrochim. Acta
, vol.211
, pp. 499-506
-
-
Wang, L.1
Guo, H.2
Wang, W.3
Teng, K.4
Xu, Z.5
Chen, C.6
Li, C.7
Yang, C.8
Hu, C.9
-
256
-
-
84956859750
-
Ag enhanced electrochemical performance for Na2Li2Ti6O14 anode in rechargeable lithium-ion batteries
-
[256] Qian, S., Yu, H., Yan, L., Li, P., Lin, X., Bai, Y., Wang, S., Long, N., Shui, M., Shu, J., Ag enhanced electrochemical performance for Na2Li2Ti6O14 anode in rechargeable lithium-ion batteries. Ceram. Int. 42 (2016), 6874–6882, 10.1016/j.ceramint.2016.01.071.
-
(2016)
Ceram. Int.
, vol.42
, pp. 6874-6882
-
-
Qian, S.1
Yu, H.2
Yan, L.3
Li, P.4
Lin, X.5
Bai, Y.6
Wang, S.7
Long, N.8
Shui, M.9
Shu, J.10
-
257
-
-
84975047663
-
Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal–organic framework
-
[257] Li, G., Yang, H., Li, F., Du, J., Shi, W., Cheng, P., Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal–organic framework. J. Mater. Chem. A 4 (2016), 9593–9599, 10.1039/c6ta02059c.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 9593-9599
-
-
Li, G.1
Yang, H.2
Li, F.3
Du, J.4
Shi, W.5
Cheng, P.6
-
258
-
-
84919935402
-
ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries
-
[258] Lin, L., Pan, Q., ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J. Mater. Chem. A 3 (2015), 1724–1729, 10.1039/c4ta05368k.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 1724-1729
-
-
Lin, L.1
Pan, Q.2
-
259
-
-
84948445069
-
Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries
-
[259] Li, W., Li, H., Lu, Z., Gan, L., Ke, L., Zhai, T., Zhou, H., Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energy Environ. Sci. 8 (2015), 3629–3636, 10.1039/c5ee02524a.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 3629-3636
-
-
Li, W.1
Li, H.2
Lu, Z.3
Gan, L.4
Ke, L.5
Zhai, T.6
Zhou, H.7
-
260
-
-
84961627254
-
Electrospun lotus root-like CoMoO4@graphene nanofibers as high-performance anode for lithium ion batteries
-
[260] Xu, J., Gu, S., Fan, L., Xu, P., Lu, B., Electrospun lotus root-like CoMoO4@graphene nanofibers as high-performance anode for lithium ion batteries. Electrochim. Acta 196 (2016), 125–130, 10.1016/j.electacta.2016.01.228.
-
(2016)
Electrochim. Acta
, vol.196
, pp. 125-130
-
-
Xu, J.1
Gu, S.2
Fan, L.3
Xu, P.4
Lu, B.5
-
261
-
-
84982737847
-
HxMoO3 nanobelts with better performance as anode in lithium-ion batteries
-
[261] Ju, X., Ning, P., Tong, X., Lin, X., Pan, X., Li, Q., Duan, X., Wang, T., HxMoO3 nanobelts with better performance as anode in lithium-ion batteries. Electrochim. Acta 213 (2016), 641–647, 10.1016/j.electacta.2016.07.160.
-
(2016)
Electrochim. Acta
, vol.213
, pp. 641-647
-
-
Ju, X.1
Ning, P.2
Tong, X.3
Lin, X.4
Pan, X.5
Li, Q.6
Duan, X.7
Wang, T.8
-
262
-
-
84981329819
-
CoMoO4/Fe2O3 core-shell nanorods with high lithium-storage performance as the anode of lithium-ion battery
-
[262] Wang, Y., Wu, Y., Xing, L., Wang, Q., Xue, X., CoMoO4/Fe2O3 core-shell nanorods with high lithium-storage performance as the anode of lithium-ion battery. J. Alloy. Compd. 689 (2016), 655–661, 10.1016/j.jallcom.2016.08.023.
-
(2016)
J. Alloy. Compd.
, vol.689
, pp. 655-661
-
-
Wang, Y.1
Wu, Y.2
Xing, L.3
Wang, Q.4
Xue, X.5
-
263
-
-
84966291001
-
Ultrafast pyro-synthesis of NiFe2O4 nanoparticles within a full carbon network as a high-rate and cycle-stable anode material for lithium ion batteries
-
[263] Preetham, P., Mohapatra, S., Nair, S.V., Santhanagopalan, D., Rai, A.K., Ultrafast pyro-synthesis of NiFe2O4 nanoparticles within a full carbon network as a high-rate and cycle-stable anode material for lithium ion batteries. RSC Adv. 6 (2016), 38064–38070, 10.1039/c6ra03670h.
-
(2016)
RSC Adv.
, vol.6
, pp. 38064-38070
-
-
Preetham, P.1
Mohapatra, S.2
Nair, S.V.3
Santhanagopalan, D.4
Rai, A.K.5
-
264
-
-
84982170301
-
Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries
-
[264] Hashimoto, H., Ukita, M., Sakuma, R., Nakanishi, M., Fujii, T., Imanishi, N., Takada, J., Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries. J. Power Sources 328 (2016), 503–509, 10.1016/j.jpowsour.2016.08.037.
-
(2016)
J. Power Sources
, vol.328
, pp. 503-509
-
-
Hashimoto, H.1
Ukita, M.2
Sakuma, R.3
Nakanishi, M.4
Fujii, T.5
Imanishi, N.6
Takada, J.7
-
265
-
-
84981273835
-
Synthesis of core-shell TiO2@MoS2 composites for lithium-ion battery anodes
-
[265] Xu, W., Wang, T., Yu, Y., Wang, S., Synthesis of core-shell TiO2@MoS2 composites for lithium-ion battery anodes. J. Alloy. Compd. 689 (2016), 460–467, 10.1016/j.jallcom.2016.07.185.
-
(2016)
J. Alloy. Compd.
, vol.689
, pp. 460-467
-
-
Xu, W.1
Wang, T.2
Yu, Y.3
Wang, S.4
-
266
-
-
84950312516
-
Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material
-
[266] Zuo, X., Chang, K., Zhao, J., Xie, Z., Tang, H., Li, B., Chang, Z., Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 4 (2016), 51–58, 10.1039/c5ta06869j.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 51-58
-
-
Zuo, X.1
Chang, K.2
Zhao, J.3
Xie, Z.4
Tang, H.5
Li, B.6
Chang, Z.7
-
267
-
-
84963669749
-
Hierarchical NiCoO2 mesoporous microspheres as anode for lithium ion batteries with superior rate capability
-
[267] Huang, Z., Zhang, K., Zhang, T., Yang, X., Liu, R., Li, Y., Lin, X., Feng, X., Ma, Y., Huang, W., Hierarchical NiCoO2 mesoporous microspheres as anode for lithium ion batteries with superior rate capability. Energy Storage Mater. 3 (2016), 36–44, 10.1016/j.ensm.2016.01.001.
-
(2016)
Energy Storage Mater.
, vol.3
, pp. 36-44
-
-
Huang, Z.1
Zhang, K.2
Zhang, T.3
Yang, X.4
Liu, R.5
Li, Y.6
Lin, X.7
Feng, X.8
Ma, Y.9
Huang, W.10
-
268
-
-
84984653336
-
SnO2/polypyrrole hollow spheres with improved cycle stability as lithium-ion battery anodes
-
[268] Yuan, J., Chen, C., Hao, Y., Zhang, X., Zou, B., Agrawal, R., Wang, C., Yu, H., Zhu, X., Yu, Y., Xiong, Z., Luo, Y., Li, H., Xie, Y., SnO2/polypyrrole hollow spheres with improved cycle stability as lithium-ion battery anodes. J. Alloy. Compd. 691 (2017), 34–39, 10.1016/j.jallcom.2016.08.229.
-
(2017)
J. Alloy. Compd.
, vol.691
, pp. 34-39
-
-
Yuan, J.1
Chen, C.2
Hao, Y.3
Zhang, X.4
Zou, B.5
Agrawal, R.6
Wang, C.7
Yu, H.8
Zhu, X.9
Yu, Y.10
Xiong, Z.11
Luo, Y.12
Li, H.13
Xie, Y.14
-
269
-
-
84985918746
-
Fabrication of Zn2GeO4 nanorods@TiO2 as anodes for lithium-ion batteries with enhanced cycling stability
-
[269] Peng, X., Zhang, X., Wang, L., Xu, M., Zhao, D., Rui, Y., Xu, J., Tang, K., Fabrication of Zn2GeO4 nanorods@TiO2 as anodes for lithium-ion batteries with enhanced cycling stability. Mater. Lett. 185 (2016), 307–310, 10.1016/j.matlet.2016.08.152.
-
(2016)
Mater. Lett.
, vol.185
, pp. 307-310
-
-
Peng, X.1
Zhang, X.2
Wang, L.3
Xu, M.4
Zhao, D.5
Rui, Y.6
Xu, J.7
Tang, K.8
-
270
-
-
84946576229
-
Defect-introduced graphene sheets with hole structure as lithium-ion battery anode
-
[270] Hu, Y., He, D., Wang, Y., Fu, M., An, X., Zhao, X., Defect-introduced graphene sheets with hole structure as lithium-ion battery anode. Mater. Lett. 2016 (2016), 278–281, 10.1016/j.matlet.2015.10.026.
-
(2016)
Mater. Lett.
, vol.2016
, pp. 278-281
-
-
Hu, Y.1
He, D.2
Wang, Y.3
Fu, M.4
An, X.5
Zhao, X.6
-
271
-
-
84918824599
-
Facile fabrication of highly flexible graphene paper for high-performance flexible lithium ion battery anode
-
[271] Kim, M., Kim, D.Y., Kang, Y., Park, O.O., Facile fabrication of highly flexible graphene paper for high-performance flexible lithium ion battery anode. RSC Adv. 5 (2015), 3299–3305, 10.1039/c4ra13164a.
-
(2015)
RSC Adv.
, vol.5
, pp. 3299-3305
-
-
Kim, M.1
Kim, D.Y.2
Kang, Y.3
Park, O.O.4
-
272
-
-
84952044429
-
Core–shell Co3O4/ZnCo2O4 coconut-like hollow spheres with extremely high performance as anode materials for lithium-ion batteries
-
[272] Wang, Q., Yu, B., Li, X., Xing, L., Xue, X., Core–shell Co3O4/ZnCo2O4 coconut-like hollow spheres with extremely high performance as anode materials for lithium-ion batteries. J. Mater. Chem. A 4 (2016), 425–433, 10.1039/c5ta06872j.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 425-433
-
-
Wang, Q.1
Yu, B.2
Li, X.3
Xing, L.4
Xue, X.5
-
273
-
-
84919752665
-
Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol–formaldehyde and their use as anode materials for lithium-ion battery
-
[273] Kakunuri, M., Vennamalla, S., Sharma, C.S., Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol–formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv. 5 (2015), 4747–4753, 10.1039/c4ra15171b.
-
(2015)
RSC Adv.
, vol.5
, pp. 4747-4753
-
-
Kakunuri, M.1
Vennamalla, S.2
Sharma, C.S.3
-
274
-
-
84919967802
-
High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode
-
[274] Kang, W., Tang, Y., Li, W., Yang, X., Xue, H., Yang, Q., Lee, C., High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode. Nanoscale 7 (2015), 225–231, 10.1039/c4nr04031g.
-
(2015)
Nanoscale
, vol.7
, pp. 225-231
-
-
Kang, W.1
Tang, Y.2
Li, W.3
Yang, X.4
Xue, H.5
Yang, Q.6
Lee, C.7
-
275
-
-
84949191200
-
Nitrogen-doped holey graphene as an anode for lithium-ion batteries with high volumetric energy density and long cycle life
-
[275] Xu, J., Lin, Y., Connell, J.W., Dai, L., Nitrogen-doped holey graphene as an anode for lithium-ion batteries with high volumetric energy density and long cycle life. Small 11 (2015), 6179–6185, 10.1002/smll.201501848.
-
(2015)
Small
, vol.11
, pp. 6179-6185
-
-
Xu, J.1
Lin, Y.2
Connell, J.W.3
Dai, L.4
-
276
-
-
84946748089
-
Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries
-
[276] Hu, Y., Yang, Q., Ma, J., Chou, S., Zhu, M., Li, Y., Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim. Acta 186 (2015), 271–276, 10.1016/j.electacta.2015.10.185.
-
(2015)
Electrochim. Acta
, vol.186
, pp. 271-276
-
-
Hu, Y.1
Yang, Q.2
Ma, J.3
Chou, S.4
Zhu, M.5
Li, Y.6
-
277
-
-
84946735330
-
Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries
-
[277] Zhang, G., Zhang, H., Zhang, X., Zeng, W., Su, Q., Du, G., Duan, H., Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries. Electrochim. Acta 186 (2015), 165–173, 10.1016/j.electacta.2015.10.133.
-
(2015)
Electrochim. Acta
, vol.186
, pp. 165-173
-
-
Zhang, G.1
Zhang, H.2
Zhang, X.3
Zeng, W.4
Su, Q.5
Du, G.6
Duan, H.7
-
278
-
-
84992745775
-
A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery
-
[278] Deng, J., Yu, X., He, Y., Li, B., Yang, Q., Kang, F., A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 6 (2017), 61–69, 10.1016/j.ensm.2016.10.005.
-
(2017)
Energy Storage Mater.
, vol.6
, pp. 61-69
-
-
Deng, J.1
Yu, X.2
He, Y.3
Li, B.4
Yang, Q.5
Kang, F.6
-
279
-
-
84947787615
-
Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries
-
[279] Huang, S., Li, Y., Feng, Y., An, H., Long, P., Qin, C., Feng, W., Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3 (2015), 23095–23105, 10.1039/c5ta06012e.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 23095-23105
-
-
Huang, S.1
Li, Y.2
Feng, Y.3
An, H.4
Long, P.5
Qin, C.6
Feng, W.7
-
280
-
-
84977567146
-
Selective crystal facets exposing of dumbbell-like Co3O4 towards high performances anode materials in lithium-ion batteries
-
[280] Wang, X., Zhou, B., Guo, J., Zhang, W., Guo, X., Selective crystal facets exposing of dumbbell-like Co3O4 towards high performances anode materials in lithium-ion batteries. Mater. Res. Bull. 83 (2016), 414–422, 10.1016/j.materresbull.2016.05.028.
-
(2016)
Mater. Res. Bull.
, vol.83
, pp. 414-422
-
-
Wang, X.1
Zhou, B.2
Guo, J.3
Zhang, W.4
Guo, X.5
-
281
-
-
84974530619
-
Enhanced Li-storage performances of dually-protected CoGeO3 nanocomposites as anode materials for lithium ion batteries
-
[281] Ge, R., Wu, S., Du, Y., Zhou, W., Zhang, Z., Enhanced Li-storage performances of dually-protected CoGeO3 nanocomposites as anode materials for lithium ion batteries. Carbon 107 (2016), 352–360, 10.1016/j.carbon.2016.06.011.
-
(2016)
Carbon
, vol.107
, pp. 352-360
-
-
Ge, R.1
Wu, S.2
Du, Y.3
Zhou, W.4
Zhang, Z.5
-
282
-
-
84991241670
-
Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries
-
[282] Zhang, L., Xia, G., Guo, Z., Li, X., Sun, D., Yu, X., Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. Int. J. Hydrogen Energy 41 (2016), 14252–14260, 10.1016/j.ijhydene.2016.06.016.
-
(2016)
Int. J. Hydrogen Energy
, vol.41
, pp. 14252-14260
-
-
Zhang, L.1
Xia, G.2
Guo, Z.3
Li, X.4
Sun, D.5
Yu, X.6
-
283
-
-
84968903167
-
Mesoporous Co3V2O8 nanoparticles grown on reduced graphene oxide as a high-rate and long-life anode material for lithium-ion batteries
-
[283] Gao, G., Lu, S., Dong, B., Xiang, Y., Xi, K., Ding, S., Mesoporous Co3V2O8 nanoparticles grown on reduced graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. J. Mater. Chem. A 4 (2016), 6264–6270, 10.1039/c5ta10719a.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 6264-6270
-
-
Gao, G.1
Lu, S.2
Dong, B.3
Xiang, Y.4
Xi, K.5
Ding, S.6
-
284
-
-
84967016867
-
3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries
-
[284] Xu, X., Cao, K., Wang, Y., Jiao, L., 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J. Mater. Chem. A 4 (2016), 6042–6047, 10.1039/c6ta00723f.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 6042-6047
-
-
Xu, X.1
Cao, K.2
Wang, Y.3
Jiao, L.4
-
285
-
-
84919914532
-
In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries
-
[285] Qiu, H., Zeng, L., Lan, T., Ding, X., Wei, M., In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries. J. Mater. Chem. A 3 (2015), 1619–1623, 10.1039/c4ta05212a.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 1619-1623
-
-
Qiu, H.1
Zeng, L.2
Lan, T.3
Ding, X.4
Wei, M.5
-
286
-
-
84948412000
-
Carbon encapsulated Fe3O4/graphene framework with oriented macropores for lithium ion battery anode with enhanced cycling stability
-
[286] Han, S., Wang, X., Huang, Y., Tang, Y., Ai, Y., Jiang, J., Wu, D., Carbon encapsulated Fe3O4/graphene framework with oriented macropores for lithium ion battery anode with enhanced cycling stability. RSC Adv. 5 (2015), 98399–98403, 10.1039/c5ra20257d.
-
(2015)
RSC Adv.
, vol.5
, pp. 98399-98403
-
-
Han, S.1
Wang, X.2
Huang, Y.3
Tang, Y.4
Ai, Y.5
Jiang, J.6
Wu, D.7
-
287
-
-
84948436744
-
Graphene/Co9S8 nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries
-
[287] Wang, H., Lu, S., Chen, Y., Han, L., Zhou, J., Wu, X., Qin, W., Graphene/Co9S8 nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries. J. Mater. Chem. A 3 (2015), 23677–23683, 10.1039/c5ta06158j.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 23677-23683
-
-
Wang, H.1
Lu, S.2
Chen, Y.3
Han, L.4
Zhou, J.5
Wu, X.6
Qin, W.7
|