메뉴 건너뛰기




Volumn 65, Issue , 2017, Pages 97-107

Parametric methods for comparing the performance of two classification algorithms evaluated by k-fold cross validation on multiple data sets

Author keywords

Classification; k fold cross validation; Parametric method; Sampling distribution

Indexed keywords

CLASSIFICATION (OF INFORMATION); DEGREES OF FREEDOM (MECHANICS); STATISTICAL TESTS;

EID: 85010685709     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.12.018     Document Type: Article
Times cited : (56)

References (14)
  • 1
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • [1] Demšar, J., Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 2
    • 58149287952 scopus 로고    scopus 로고
    • An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
    • [2] García, S., Herrera, F., An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9 (2008), 2677–2694.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 3
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • [3] García, S., Fernández, A., Luengo, J., Herrera, F., Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180 (2010), 2044–2064.
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 4
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • [4] Dietterich, T.G., Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10 (1998), 1895–1923.
    • (1998) Neural Comput. , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 5
    • 85010649371 scopus 로고    scopus 로고
    • W.Mendenhall, R.J.Beaver, B.M.BeaverIntroduction to Probability and Statistics,14th Edition, Cengage Learning, 2013.
    • [5] W.Mendenhall, R.J.Beaver, B.M.BeaverIntroduction to Probability and Statistics,14th Edition, Cengage Learning, 2013.
  • 6
    • 84929503174 scopus 로고    scopus 로고
    • Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
    • [6] Wong, T.T., Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 48 (2015), 2839–2846.
    • (2015) Pattern Recognit. , vol.48 , pp. 2839-2846
    • Wong, T.T.1
  • 9
    • 0004255908 scopus 로고    scopus 로고
    • Machine Learning
    • McGraw-Hill New York
    • [9] Mitchell, T.M., Machine Learning. 1997, McGraw-Hill, New York.
    • (1997)
    • Mitchell, T.M.1
  • 10
    • 25144439604 scopus 로고    scopus 로고
    • Introduction to Data Mining
    • Addison Wesley Massachusetts
    • [10] Tan, P.N., Steinbach, M., Kumar, V., Introduction to Data Mining. 2006, Addison Wesley, Massachusetts.
    • (2006)
    • Tan, P.N.1    Steinbach, M.2    Kumar, V.3
  • 12
    • 84886567160 scopus 로고    scopus 로고
    • UCI machine learning repository
    • University of California, School of Information and Computer Sciences Irvine
    • [12] Lichman, M., UCI machine learning repository. 2013, University of California, School of Information and Computer Sciences, Irvine 〈http://archive.ics.uci.edu/ml〉.
    • (2013)
    • Lichman, M.1
  • 14
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • [14] Webb, G.I., Multiboosting: a technique for combining boosting and wagging. Mach. Learn. 40 (2000), 159–197.
    • (2000) Mach. Learn. , vol.40 , pp. 159-197
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.