메뉴 건너뛰기




Volumn 53, Issue 1, 2018, Pages 197-213

The Potential of High-Dimensional Propensity Scores in Health Services Research: An Exemplary Study on the Quality of Care for Elective Percutaneous Coronary Interventions

Author keywords

administrative data; Residual confounding; unmeasured confounding

Indexed keywords

CLINICAL STUDY; COHORT ANALYSIS; COMORBIDITY; CONTROLLED STUDY; DATA BASE; HEALTH SERVICES RESEARCH; HOSPITAL PATIENT; HUMAN; MORTALITY RISK; OUTPATIENT; PERCUTANEOUS CORONARY INTERVENTION; PROPENSITY SCORE; PROPORTIONAL HAZARDS MODEL; STUDY DESIGN; AGE; ELECTIVE SURGERY; EPIDEMIOLOGY; GERMANY; HEALTH CARE QUALITY; INSURANCE; PROCEDURES; RETROSPECTIVE STUDY; SEX FACTOR; STANDARDS; STATISTICS AND NUMERICAL DATA;

EID: 85010645220     PISSN: 00179124     EISSN: 14756773     Source Type: Journal    
DOI: 10.1111/1475-6773.12653     Document Type: Article
Times cited : (8)

References (31)
  • 1
    • 70449353778 scopus 로고    scopus 로고
    • The QuIK-Registry of the German Society of Cardiologists in Private Practice: Countrywide and Benchmarking Quality Assurance in Invasive Cardiology
    • Albrecht, A., B. Levenson, S. Gohring, W. Haerer, N. Reifart, G. Ringwald, and B. Troger. 2009. “The QuIK-Registry of the German Society of Cardiologists in Private Practice: Countrywide and Benchmarking Quality Assurance in Invasive Cardiology.” Deutsche Medizinische Wochenschrift 134 (suppl 6): S211–3.
    • (2009) Deutsche Medizinische Wochenschrift , vol.134 , pp. S211-S213
    • Albrecht, A.1    Levenson, B.2    Gohring, S.3    Haerer, W.4    Reifart, N.5    Ringwald, G.6    Troger, B.7
  • 2
    • 79955930631 scopus 로고    scopus 로고
    • Göttingen, AQUA-Institut
    • AQUA-Institut. 2010. Qualitätsreport 2009. Göttingen: AQUA-Institut.
    • (2010) Qualitätsreport 2009
  • 3
    • 84944796673 scopus 로고    scopus 로고
    • Moving Towards Best Practice When Using Inverse Probability of Treatment Weighting (IPTW) Using the Propensity Score to Estimate Causal Treatment Effects in Observational Studies
    • Austin, P. C., and E. A. Stuart. 2015. “Moving Towards Best Practice When Using Inverse Probability of Treatment Weighting (IPTW) Using the Propensity Score to Estimate Causal Treatment Effects in Observational Studies.” Statistics in Medicine 34 (28): 3661–79.
    • (2015) Statistics in Medicine , vol.34 , Issue.28 , pp. 3661-3679
    • Austin, P.C.1    Stuart, E.A.2
  • 4
    • 77955619018 scopus 로고    scopus 로고
    • Risk of Intracerebral Hemorrhage Associated With Phenprocoumon Exposure: A Nested Case-Control Study in a Large Population-Based German Database
    • Behr, S., F. Andersohn, and E. Garbe. 2010. “Risk of Intracerebral Hemorrhage Associated With Phenprocoumon Exposure: A Nested Case-Control Study in a Large Population-Based German Database.” Pharmacoepidemiology and Drug Safety 19 (7): 722–30.
    • (2010) Pharmacoepidemiology and Drug Safety , vol.19 , Issue.7 , pp. 722-730
    • Behr, S.1    Andersohn, F.2    Garbe, E.3
  • 7
    • 84879839205 scopus 로고    scopus 로고
    • Squeezing the Balloon: Propensity Scores and Unmeasured Covariate Balance
    • Brooks, J. M., and R. L. Ohsfeldt. 2013. “Squeezing the Balloon: Propensity Scores and Unmeasured Covariate Balance.” Health Services Research 48 (4): 1487–507.
    • (2013) Health Services Research , vol.48 , Issue.4 , pp. 1487-1507
    • Brooks, J.M.1    Ohsfeldt, R.L.2
  • 8
    • 0013916535 scopus 로고
    • Spurious Effects from an Extraneous Variable
    • Bross, I. D. J. 1966. “Spurious Effects from an Extraneous Variable.” Journal of Chronic Diseases 19 (6): 637–47.
    • (1966) Journal of Chronic Diseases , vol.19 , Issue.6 , pp. 637-647
    • Bross, I.D.J.1
  • 9
    • 51749124303 scopus 로고    scopus 로고
    • Constructing Inverse Probability Weights for Marginal Structural Models
    • Cole, S. R., and M. A. Hernán. 2008. “Constructing Inverse Probability Weights for Marginal Structural Models.” American Journal of Epidemiology 168 (6): 656–64.
    • (2008) American Journal of Epidemiology , vol.168 , Issue.6 , pp. 656-664
    • Cole, S.R.1    Hernán, M.A.2
  • 10
    • 60449086859 scopus 로고    scopus 로고
    • Dealing with Limited Overlap in Estimation of Average Treatment Effects
    • Crump, R. K., V. J. Hotz, G. W. Imbens, and O. A. Mitnik. 2009. “Dealing with Limited Overlap in Estimation of Average Treatment Effects.” Biometrika 96 (1): 187–99.
    • (2009) Biometrika , vol.96 , Issue.1 , pp. 187-199
    • Crump, R.K.1    Hotz, V.J.2    Imbens, G.W.3    Mitnik, O.A.4
  • 11
    • 84877127012 scopus 로고    scopus 로고
    • High-Dimensional Versus Conventional Propensity Scores in a Comparative Effectiveness Study of Coxibs and Reduced Upper Gastrointestinal Complications
    • Garbe, E., S. Kloss, M. Suling, I. Pigeot, and S. Schneeweiss. 2013. “High-Dimensional Versus Conventional Propensity Scores in a Comparative Effectiveness Study of Coxibs and Reduced Upper Gastrointestinal Complications.” European Journal of Clinical Pharmacology 69 (3): 549–57.
    • (2013) European Journal of Clinical Pharmacology , vol.69 , Issue.3 , pp. 549-557
    • Garbe, E.1    Kloss, S.2    Suling, M.3    Pigeot, I.4    Schneeweiss, S.5
  • 12
    • 84940836157 scopus 로고    scopus 로고
    • Costs of Venous Thromboembolism, Catheter-Associated Urinary Tract Infection, and Pressure Ulcer
    • Goudie, A., L. Dynan, P. W. Brady, E. Fieldston, R. J. Brilli, and K. E. Walsh. 2015. “Costs of Venous Thromboembolism, Catheter-Associated Urinary Tract Infection, and Pressure Ulcer.” Pediatrics 136 (3): 432–9.
    • (2015) Pediatrics , vol.136 , Issue.3 , pp. 432-439
    • Goudie, A.1    Dynan, L.2    Brady, P.W.3    Fieldston, E.4    Brilli, R.J.5    Walsh, K.E.6
  • 13
    • 84874792851 scopus 로고    scopus 로고
    • Complication Rates and Secondary Interventions After Coronary Procedures in Clinical Routine: 1-Year Follow-up Based on Routine Data of a German Health Insurance Company
    • Jeschke, E., H. T. Baberg, P. Dirschedl, K. Heyde, B. Levenson, J. Malzahn, T. Mansky, M. Mockel, and C. Gunster. 2013. “Complication Rates and Secondary Interventions After Coronary Procedures in Clinical Routine: 1-Year Follow-up Based on Routine Data of a German Health Insurance Company.” Deutsche Medizinische Wochenschrift 138 (12): 570–5.
    • (2013) Deutsche Medizinische Wochenschrift , vol.138 , Issue.12 , pp. 570-575
    • Jeschke, E.1    Baberg, H.T.2    Dirschedl, P.3    Heyde, K.4    Levenson, B.5    Malzahn, J.6    Mansky, T.7    Mockel, M.8    Gunster, C.9
  • 14
    • 84896705250 scopus 로고    scopus 로고
    • A Comparison of Confounding Adjustment Methods for Assessment of Asthma Controller Medication Effectiveness
    • Li, L., W. M. Vollmer, M. G. Butler, P. Wu, E. O. Kharbanda, and A. C. Wu. 2014. “A Comparison of Confounding Adjustment Methods for Assessment of Asthma Controller Medication Effectiveness.” American Journal of Epidemiology 179 (5): 648–59.
    • (2014) American Journal of Epidemiology , vol.179 , Issue.5 , pp. 648-659
    • Li, L.1    Vollmer, W.M.2    Butler, M.G.3    Wu, P.4    Kharbanda, E.O.5    Wu, A.C.6
  • 17
    • 84906066705 scopus 로고    scopus 로고
    • Evaluating Methods for Intersectoral Comparison of Quality of Care. A Routine Data Analysis of Elective Percutaneous Coronary Interventions
    • Ohlmeier, C., R. Linder, D. Enders, R. Mikolajczyk, W. Haverkamp, D. Horenkamp-Sonntag, and E. Garbe. 2014. “Evaluating Methods for Intersectoral Comparison of Quality of Care. A Routine Data Analysis of Elective Percutaneous Coronary Interventions.” Methods of Information in Medicine 53 (4): 269–77.
    • (2014) Methods of Information in Medicine , vol.53 , Issue.4 , pp. 269-277
    • Ohlmeier, C.1    Linder, R.2    Enders, D.3    Mikolajczyk, R.4    Haverkamp, W.5    Horenkamp-Sonntag, D.6    Garbe, E.7
  • 19
    • 84856034091 scopus 로고    scopus 로고
    • Using High-Dimensional Propensity Scores to Automate Confounding Control in a Distributed Medical Product Safety Surveillance System
    • Rassen, J. A., and S. Schneeweiss. 2012. “Using High-Dimensional Propensity Scores to Automate Confounding Control in a Distributed Medical Product Safety Surveillance System.” Pharmacoepidemiology and Drug Safety 21 (suppl 1): 41–9.
    • (2012) Pharmacoepidemiology and Drug Safety , vol.21 , pp. 41-49
    • Rassen, J.A.1    Schneeweiss, S.2
  • 20
    • 79958845225 scopus 로고    scopus 로고
    • Covariate Selection in High-Dimensional Propensity Score Analyses of Treatment Effects in Small Samples
    • Rassen, J. A., R. J. Glynn, M. A. Brookhart, and S. Schneeweiss. 2011. “Covariate Selection in High-Dimensional Propensity Score Analyses of Treatment Effects in Small Samples.” American Journal of Epidemiology 173 (12): 1404–13.
    • (2011) American Journal of Epidemiology , vol.173 , Issue.12 , pp. 1404-1413
    • Rassen, J.A.1    Glynn, R.J.2    Brookhart, M.A.3    Schneeweiss, S.4
  • 23
    • 0033847784 scopus 로고    scopus 로고
    • Marginal Structural Models and Causal Inference in Epidemiology
    • Robins, J. M., M. A. Hernan, and B. Brumback. 2000. “Marginal Structural Models and Causal Inference in Epidemiology.” Epidemiology 11 (5): 550–60.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550-560
    • Robins, J.M.1    Hernan, M.A.2    Brumback, B.3
  • 26
    • 67651042983 scopus 로고    scopus 로고
    • High-Dimensional Propensity Score Adjustment in Studies of Treatment Effects Using Health Care Claims Data
    • Schneeweiss, S., J. A. Rassen, R. J. Glynn, J. Avorn, H. Mogun, and M. A. Brookhart. 2009. “High-Dimensional Propensity Score Adjustment in Studies of Treatment Effects Using Health Care Claims Data.” Epidemiology 20 (4): 512–22.
    • (2009) Epidemiology , vol.20 , Issue.4 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3    Avorn, J.4    Mogun, H.5    Brookhart, M.A.6
  • 27
    • 59649093546 scopus 로고    scopus 로고
    • Effect of Physician Volume on the Relationship Between Hospital Volume and Mortality during Primary Angioplasty
    • Srinivas, V. S., S. M. Hailpern, E. Koss, E. S. Monrad, and M. H. Alderman. 2009. “Effect of Physician Volume on the Relationship Between Hospital Volume and Mortality during Primary Angioplasty.” Journal of the American College of Cardiology 53 (7): 574–9.
    • (2009) Journal of the American College of Cardiology , vol.53 , Issue.7 , pp. 574-579
    • Srinivas, V.S.1    Hailpern, S.M.2    Koss, E.3    Monrad, E.S.4    Alderman, M.H.5
  • 28
    • 84902076643 scopus 로고    scopus 로고
    • Propensity Scores for Confounder Adjustment When Assessing the Effects of Medical Interventions Using Nonexperimental Study Designs
    • Stürmer, T., R. Wyss, R. J. Glynn, and M. A. Brookhart. 2014. “Propensity Scores for Confounder Adjustment When Assessing the Effects of Medical Interventions Using Nonexperimental Study Designs.” Journal of Internal Medicine 275 (6): 570–80.
    • (2014) Journal of Internal Medicine , vol.275 , Issue.6 , pp. 570-580
    • Stürmer, T.1    Wyss, R.2    Glynn, R.J.3    Brookhart, M.A.4
  • 29
    • 77957301897 scopus 로고    scopus 로고
    • Treatment Effects in the Presence of Unmeasured Confounding: Dealing with Observations in the Tails of the Propensity Score Distribution—A Simulation Study
    • Stürmer, T., K. J. Rothman, J. Avorn, and R. J. Glynn. 2010. “Treatment Effects in the Presence of Unmeasured Confounding: Dealing with Observations in the Tails of the Propensity Score Distribution—A Simulation Study.” American Journal of Epidemiology 172 (7): 843–54.
    • (2010) American Journal of Epidemiology , vol.172 , Issue.7 , pp. 843-854
    • Stürmer, T.1    Rothman, K.J.2    Avorn, J.3    Glynn, R.J.4
  • 30
    • 79960704238 scopus 로고    scopus 로고
    • Confounding Adjustment via a Semi-Automated High-Dimensional Propensity Score Algorithm: An Application to Electronic Medical Records
    • Toh, S., L. A. Garcia Rodriguez, and M. A. Hernan. 2011. “Confounding Adjustment via a Semi-Automated High-Dimensional Propensity Score Algorithm: An Application to Electronic Medical Records.” Pharmacoepidemiology and Drug Safety 20 (8): 849–57.
    • (2011) Pharmacoepidemiology and Drug Safety , vol.20 , Issue.8 , pp. 849-857
    • Toh, S.1    Garcia Rodriguez, L.A.2    Hernan, M.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.