메뉴 건너뛰기




Volumn 22, Issue 2, 2017, Pages 139-151

Morphological, mechanical, and in vitro cytocompatibility analysis of poly(vinyl alcohol)–silica glass hybrid scaffolds reinforced with cellulose nanocrystals

Author keywords

Cellulose nanocrystals; cytocompatibility; freeze drying; poly(vinyl alcohol); scaffolds; silica glass

Indexed keywords

BIOACTIVE GLASS; CELL ADHESION; CELLULOSE; CELLULOSE DERIVATIVES; FUSED SILICA; LOW TEMPERATURE DRYING; NANOCRYSTALS; POLYVINYL ALCOHOLS; REINFORCEMENT; SCAFFOLDS; SILICA; SOLS;

EID: 85009283152     PISSN: 1023666X     EISSN: 15635341     Source Type: Journal    
DOI: 10.1080/1023666X.2016.1263909     Document Type: Article
Times cited : (8)

References (38)
  • 1
    • 0038501817 scopus 로고    scopus 로고
    • Scaffold design for tissue engineering
    • Chen, G., T., Ushida, and T., Tateishi. 2002. Scaffold design for tissue engineering. Macromol. Biosci. 2:67–77.
    • (2002) Macromol. Biosci. , vol.2 , pp. 67-77
    • Chen, G.1    Ushida, T.2    Tateishi, T.3
  • 2
    • 10644256645 scopus 로고    scopus 로고
    • A two year in vivo study of polyvinyl alcohol–hydrogel (PVA–H) artificial meniscus
    • Kobayashi, M., Y. S., Chang, and M., Oka. 2005. A two year in vivo study of polyvinyl alcohol–hydrogel (PVA–H) artificial meniscus. Biomaterials 26:3243–3248.
    • (2005) Biomaterials , vol.26 , pp. 3243-3248
    • Kobayashi, M.1    Chang, Y.S.2    Oka, M.3
  • 3
    • 79960185896 scopus 로고    scopus 로고
    • High strength graphene oxide/polyvinyl alcohol composite hydrogels
    • Zhang, L., Z., Wang, C., Xu, Y., Li, J., Gao, W., Wang, and Y., Liu. 2011. High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 21:10399–10406.
    • (2011) J. Mater. Chem. , vol.21 , pp. 10399-10406
    • Zhang, L.1    Wang, Z.2    Xu, C.3    Li, Y.4    Gao, J.5    Wang, W.6    Liu, Y.7
  • 4
    • 79951577364 scopus 로고    scopus 로고
    • A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics
    • Hoppe, A., N. S., Güldal, and A. R., Boccaccini. 2011. A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774.
    • (2011) Biomaterials , vol.32 , pp. 2757-2774
    • Hoppe, A.1    Güldal, N.S.2    Boccaccini, A.R.3
  • 5
    • 38949189323 scopus 로고    scopus 로고
    • Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine
    • Rainer, A., S. M., Giannitelli, F., Abbruzzese, E., Traversa, S., Licoccia, and M., Trombetta. 2008. Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine. Acta Biomater. 4:362–369.
    • (2008) Acta Biomater. , vol.4 , pp. 362-369
    • Rainer, A.1    Giannitelli, S.M.2    Abbruzzese, F.3    Traversa, E.4    Licoccia, S.5    Trombetta, M.6
  • 6
    • 77956625309 scopus 로고    scopus 로고
    • Sol–gel silica-based biomaterials and bone tissue regeneration
    • Arcos, D., and M., Vallet-Regí. 2010. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 6:2874–2888.
    • (2010) Acta Biomater. , vol.6 , pp. 2874-2888
    • Arcos, D.1    Vallet-Regí, M.2
  • 7
    • 84901503413 scopus 로고    scopus 로고
    • New sol–gel bioactive glass and titania composites with enhanced physico‐chemical and biological properties
    • Pawlik, J., M., Widziołek, K., Cholewa‐Kowalska, M., Łączka, and A. M., Osyczka. 2014. New sol–gel bioactive glass and titania composites with enhanced physico‐chemical and biological properties. J. Biomed. Mater. Res. A 102:2383–2394.
    • (2014) J. Biomed. Mater. Res. A , vol.102 , pp. 2383-2394
    • Pawlik, J.1    Widziołek, M.2    Cholewa‐Kowalska, K.3    Łączka, M.4    Osyczka, A.M.5
  • 8
    • 84883411646 scopus 로고    scopus 로고
    • Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells
    • Qu, T., and X., Liu. 2013. Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. J. Mater. Chem. B 1:4764–4772.
    • (2013) J. Mater. Chem. B , vol.1 , pp. 4764-4772
    • Qu, T.1    Liu, X.2
  • 9
    • 84883856795 scopus 로고    scopus 로고
    • Biomimetic and molecular level-based silicate bioactive glass–gelatin hybrid implants for loading-bearing bone fixation and repair
    • Lei, B., L., Wang, X., Chen, and S. K., Chae. 2013. Biomimetic and molecular level-based silicate bioactive glass–gelatin hybrid implants for loading-bearing bone fixation and repair. J. Mater. Chem. B 1:5153–5162.
    • (2013) J. Mater. Chem. B , vol.1 , pp. 5153-5162
    • Lei, B.1    Wang, L.2    Chen, X.3    Chae, S.K.4
  • 10
    • 84870253740 scopus 로고    scopus 로고
    • Review of bioactive glass: from Hench to hybrids
    • Jones, J. R., 2013. Review of bioactive glass:from Hench to hybrids. Acta Biomater. 9:4457–4486.
    • (2013) Acta Biomater. , vol.9 , pp. 4457-4486
    • Jones, J.R.1
  • 11
    • 79151486215 scopus 로고    scopus 로고
    • Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals
    • Mahmoud, K. A., J. A., Mena, K. B., Male, S., Hrapovic, A., Kamen, J. H. T., Luong. 2010. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl. Mater. Interfaces 2:2924–2932.
    • (2010) ACS Appl. Mater. Interfaces , vol.2 , pp. 2924-2932
    • Mahmoud, K.A.1    Mena, J.A.2    Male, K.B.3    Hrapovic, S.4    Kamen, A.5    Luong, J.H.T.6
  • 12
    • 77956542731 scopus 로고    scopus 로고
    • Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers
    • Dugan, J. M., J. E., Gough, and S. J., Eichhorn. 2010. Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11:2498–2504.
    • (2010) Biomacromolecules , vol.11 , pp. 2498-2504
    • Dugan, J.M.1    Gough, J.E.2    Eichhorn, S.J.3
  • 13
    • 79959459258 scopus 로고    scopus 로고
    • Cellulose nanomaterials review: Structure, properties and nanocomposites
    • Moon, R. J., A., Martini, J., Nairn, J., Simonsen, and J., Yougblood. 2011. Cellulose nanomaterials review:Structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941–3994.
    • (2011) Chem. Soc. Rev. , vol.40 , pp. 3941-3994
    • Moon, R.J.1    Martini, A.2    Nairn, J.3    Simonsen, J.4    Yougblood, J.5
  • 14
    • 16344384008 scopus 로고    scopus 로고
    • Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field
    • Azizi Samir, M. A. S., F., Alloin, and A., Dufresne. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626.
    • (2005) Biomacromolecules , vol.6 , pp. 612-626
    • Azizi Samir, M.A.S.1    Alloin, F.2    Dufresne, A.3
  • 15
    • 84875994473 scopus 로고    scopus 로고
    • Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis
    • Camarero Espinosa, S., T., Kuhnt, E. J., Foster, and C., Weder. 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230.
    • (2013) Biomacromolecules , vol.14 , pp. 1223-1230
    • Camarero Espinosa, S.1    Kuhnt, T.2    Foster, E.J.3    Weder, C.4
  • 16
    • 84875985408 scopus 로고    scopus 로고
    • Potential of nanocrystalline cellulose–fibrin nanocomposites for artificial vascular graft applications
    • Brown, E. E., D., Hu, N. A., Lail, and X., Zhang. 2013. Potential of nanocrystalline cellulose–fibrin nanocomposites for artificial vascular graft applications. Biomacromolecules 14:1063–1071.
    • (2013) Biomacromolecules , vol.14 , pp. 1063-1071
    • Brown, E.E.1    Hu, D.2    Lail, N.A.3    Zhang, X.4
  • 17
    • 84880141201 scopus 로고    scopus 로고
    • Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process
    • Sai, H., L., Xing, J., Xiang, L., Cui, J., Jiao, C., Zhao, Z., Li, and F., Li. 2013. Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J. Mater. Chem. A 1:7963–7970.
    • (2013) J. Mater. Chem. A , vol.1 , pp. 7963-7970
    • Sai, H.1    Xing, L.2    Xiang, J.3    Cui, L.4    Jiao, J.5    Zhao, C.6    Li, Z.7    Li, F.8
  • 18
    • 85027924856 scopus 로고    scopus 로고
    • Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: Improved mechanical properties promoted by nanoscale chemical compatibilization
    • Zhao, S., Z., Zhang, G., Sèbe, R., Wu, R. V., Rivera Virtudazo, P., Tingaut, and M. M., Koebel. 2015. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds:Improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25:2326–2334.
    • (2015) Adv. Funct. Mater. , vol.25 , pp. 2326-2334
    • Zhao, S.1    Zhang, Z.2    Sèbe, G.3    Wu, R.4    Rivera Virtudazo, R.V.5    Tingaut, P.6    Koebel, M.M.7
  • 20
    • 84940855859 scopus 로고    scopus 로고
    • Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica
    • Ching, Y. C., A., Rahman, K. Y., Ching, N. L., Sukiman, and H. C., Cheng. 2015. Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica. Bioresources 10:3364–3377.
    • (2015) Bioresources , vol.10 , pp. 3364-3377
    • Ching, Y.C.1    Rahman, A.2    Ching, K.Y.3    Sukiman, N.L.4    Cheng, H.C.5
  • 21
    • 84904271866 scopus 로고    scopus 로고
    • Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals
    • Kumar, A., Y. S., Negi, V., Choudhary, and N. K., Bhardwaj. 2014. Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose 21:3409–3426.
    • (2014) Cellulose , vol.21 , pp. 3409-3426
    • Kumar, A.1    Negi, Y.S.2    Choudhary, V.3    Bhardwaj, N.K.4
  • 22
    • 84954491621 scopus 로고    scopus 로고
    • Fabrication of poly(vinyl alcohol)/ovalbumin/cellulose nanocrystals/nanohydroxyapatite based biocomposite scaffolds
    • Kumar, A., Y. S., Negi, V., Choudhary, N. K., Bhardwaj. 2016. Fabrication of poly(vinyl alcohol)/ovalbumin/cellulose nanocrystals/nanohydroxyapatite based biocomposite scaffolds. Inter. J. Polym. Mater. Polym. Biomater. 65:191–201.
    • (2016) Inter. J. Polym. Mater. Polym. Biomater. , vol.65 , pp. 191-201
    • Kumar, A.1    Negi, Y.S.2    Choudhary, V.3    Bhardwaj, N.K.4
  • 23
    • 84962160928 scopus 로고    scopus 로고
    • Cross-linked poly(vinyl alcohol) (PVA) foams reinforced with cellulose nanocrystals (CNCs)
    • Song, T., S., Tanpichai, and K., Oksman. 2016. Cross-linked poly(vinyl alcohol) (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23:1925–1938.
    • (2016) Cellulose , vol.23 , pp. 1925-1938
    • Song, T.1    Tanpichai, S.2    Oksman, K.3
  • 24
    • 84862797389 scopus 로고    scopus 로고
    • Synthesis and characterization of methylcellulose/PVA based porous composite
    • Kumar, A., Y. S., Negi, N. K., Bhardwaj, and V., Choudhary. 2012. Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydr. Polym. 88:1364–1372.
    • (2012) Carbohydr. Polym. , vol.88 , pp. 1364-1372
    • Kumar, A.1    Negi, Y.S.2    Bhardwaj, N.K.3    Choudhary, V.4
  • 25
    • 84901468420 scopus 로고    scopus 로고
    • Characterization of cellulose nanocrystals produced by acid–hydrolysis from sugarcane bagasse as agro-waste
    • Kumar, A., Y. S., Negi, V., Choudhary, N. K., Bhardwaj. 2014. Characterization of cellulose nanocrystals produced by acid–hydrolysis from sugarcane bagasse as agro-waste. J. Mater. Phys. Chem. 2:1–8.
    • (2014) J. Mater. Phys. Chem. , vol.2 , pp. 1-8
    • Kumar, A.1    Negi, Y.S.2    Choudhary, V.3    Bhardwaj, N.K.4
  • 26
    • 84863188139 scopus 로고    scopus 로고
    • Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications
    • Nie, L., D., Chen, J., Suo, P., Zou, S., Feng, Q., Yang, S., Yang, and S., Ye. 2012. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloids Surf. B 100:169–176.
    • (2012) Colloids Surf. B , vol.100 , pp. 169-176
    • Nie, L.1    Chen, D.2    Suo, J.3    Zou, P.4    Feng, S.5    Yang, Q.6    Yang, S.7    Ye, S.8
  • 27
    • 84927931127 scopus 로고    scopus 로고
    • A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration
    • Zhao, X., Y., Wu, Y., Du, X., Chen, B., Lei, Y., Xue, and P. X., Ma. 2015. A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J. Mater. Chem. B 3:3222–3233.
    • (2015) J. Mater. Chem. B , vol.3 , pp. 3222-3233
    • Zhao, X.1    Wu, Y.2    Du, Y.3    Chen, X.4    Lei, B.5    Xue, Y.6    Ma, P.X.7
  • 28
    • 79953651750 scopus 로고    scopus 로고
    • Toward “strong” green nanocomposites: Polyvinyl alcohol reinforced with extremely oriented cellulose whiskers
    • Jalal Uddin A., J., Araki, and Y., Gotoh. 2011. Toward “strong” green nanocomposites:Polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12:617–624.
    • (2011) Biomacromolecules , vol.12 , pp. 617-624
    • Jalal Uddin, A.1    Araki, J.2    Gotoh, Y.3
  • 29
    • 1642603860 scopus 로고    scopus 로고
    • X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques
    • Ricciardi, R., F., Auriemma, C. D., Rosa, and F., Laupretre. 2004. X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37:1921–1927.
    • (2004) Macromolecules , vol.37 , pp. 1921-1927
    • Ricciardi, R.1    Auriemma, F.2    Rosa, C.D.3    Laupretre, F.4
  • 31
    • 1842481625 scopus 로고    scopus 로고
    • Identification of cellulosic fibres by FTIR spectroscopy-thread and single fibre analysis by attenuated total reflectance
    • Garside, P., and P., Wyeth. 2003. Identification of cellulosic fibres by FTIR spectroscopy-thread and single fibre analysis by attenuated total reflectance. Stud. Conserv. 48:269–275.
    • (2003) Stud. Conserv. , vol.48 , pp. 269-275
    • Garside, P.1    Wyeth, P.2
  • 32
    • 62749193162 scopus 로고    scopus 로고
    • Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications
    • Costa-Junior, E. S., E. F., Barbosa-Stancioli, A. A. P., Mansur, W. L., Vasconcelos, and H. S., Mansur. 2009. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr. Polym. 76:472–481.
    • (2009) Carbohydr. Polym. , vol.76 , pp. 472-481
    • Costa-Junior, E.S.1    Barbosa-Stancioli, E.F.2    Mansur, A.A.P.3    Vasconcelos, W.L.4    Mansur, H.S.5
  • 33
    • 77952511855 scopus 로고    scopus 로고
    • Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance
    • Park, S., J. O., Baker, M. E., Himmel, P. A., Parilla, and D. K., Johnson. 2010. Cellulose crystallinity index:Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3:1–10.
    • (2010) Biotechnol. Biofuels , vol.3 , pp. 1-10
    • Park, S.1    Baker, J.O.2    Himmel, M.E.3    Parilla, P.A.4    Johnson, D.K.5
  • 34
    • 84940491137 scopus 로고    scopus 로고
    • Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass
    • Pourhaghgouy, M., A., Zamanian, M., Shahrezaee, and M. P., Masouleh. 2016. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Mater. Sci. Eng. C 58:180–186.
    • (2016) Mater. Sci. Eng. C , vol.58 , pp. 180-186
    • Pourhaghgouy, M.1    Zamanian, A.2    Shahrezaee, M.3    Masouleh, M.P.4
  • 35
    • 84862652414 scopus 로고    scopus 로고
    • Advances in bioactive hydrogels to probe and direct cell fate
    • DeForest, C. A., and K. S., Anseth. 2012. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3:421–444.
    • (2012) Annu. Rev. Chem. Biomol. Eng. , vol.3 , pp. 421-444
    • DeForest, C.A.1    Anseth, K.S.2
  • 36
    • 84866048568 scopus 로고    scopus 로고
    • Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component
    • Paduraru, O. M., D., Ciolacu, R. N., Darie, and C., Vasile. 2012. Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Mater. Sci. Eng. C 32:2508–2515.
    • (2012) Mater. Sci. Eng. C , vol.32 , pp. 2508-2515
    • Paduraru, O.M.1    Ciolacu, D.2    Darie, R.N.3    Vasile, C.4
  • 37
    • 44849111562 scopus 로고    scopus 로고
    • Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol)
    • Budrugeac, P., 2008. Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J. Therm. Anal. Calorim. 92:291–296.
    • (2008) J. Therm. Anal. Calorim. , vol.92 , pp. 291-296
    • Budrugeac, P.1
  • 38
    • 79961031070 scopus 로고    scopus 로고
    • Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization
    • Mandal, A., and D., Chakrabarty. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 86:1291–1299.
    • (2011) Carbohydr. Polym. , vol.86 , pp. 1291-1299
    • Mandal, A.1    Chakrabarty, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.