메뉴 건너뛰기




Volumn 59, Issue 5, 2017, Pages 462-469

The genetic basis of cerebral palsy

Author keywords

[No Author keywords available]

Indexed keywords

APOLIPOPROTEIN E4; OSTEOPONTIN;

EID: 85009188317     PISSN: 00121622     EISSN: 14698749     Source Type: Journal    
DOI: 10.1111/dmcn.13363     Document Type: Review
Times cited : (143)

References (66)
  • 2
    • 84875801182 scopus 로고    scopus 로고
    • The association of cerebral palsy with birth asphyxia: a definitional quagmire
    • Ellenberg JH, Nelson KB. The association of cerebral palsy with birth asphyxia: a definitional quagmire. Dev Med Child Neurol 2013; 55: 210–16.
    • (2013) Dev Med Child Neurol , vol.55 , pp. 210-216
    • Ellenberg, J.H.1    Nelson, K.B.2
  • 3
    • 33744827121 scopus 로고    scopus 로고
    • The descriptive epidemiology of cerebral palsy
    • Paneth N, Hong T, Korzeniewski S. The descriptive epidemiology of cerebral palsy. Clin Perinatol 2006; 33: 251–67.
    • (2006) Clin Perinatol , vol.33 , pp. 251-267
    • Paneth, N.1    Hong, T.2    Korzeniewski, S.3
  • 4
    • 33745611808 scopus 로고    scopus 로고
    • Cerebral palsy and the application of the international criteria for acute intrapartum hypoxia
    • Strijbis EM, Oudman I, van Essen P, MacLennan AH. Cerebral palsy and the application of the international criteria for acute intrapartum hypoxia. Obstet Gynecol 2006; 107: 1357–65.
    • (2006) Obstet Gynecol , vol.107 , pp. 1357-1365
    • Strijbis, E.M.1    Oudman, I.2    van Essen, P.3    MacLennan, A.H.4
  • 5
    • 0141990478 scopus 로고    scopus 로고
    • Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy
    • Hankins GD, Speer M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynecol 2003; 102: 628–36.
    • (2003) Obstet Gynecol , vol.102 , pp. 628-636
    • Hankins, G.D.1    Speer, M.2
  • 6
    • 0033576152 scopus 로고    scopus 로고
    • A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement
    • MacLennan A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ 1999; 319: 1054–59.
    • (1999) BMJ , vol.319 , pp. 1054-1059
    • MacLennan, A.1
  • 9
    • 0036899936 scopus 로고    scopus 로고
    • Trends in the prevalence of cerebral palsy in a population-based study
    • Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics 2002; 110: 1220–25.
    • (2002) Pediatrics , vol.110 , pp. 1220-1225
    • Winter, S.1    Autry, A.2    Boyle, C.3    Yeargin-Allsopp, M.4
  • 10
    • 84872580837 scopus 로고    scopus 로고
    • Brain magnetic resonance imaging and motor and intellectual functioning in 86 patients born at term with spastic diplegia
    • Numata Y, Onuma A, Kobayashi Y, et al. Brain magnetic resonance imaging and motor and intellectual functioning in 86 patients born at term with spastic diplegia. Dev Med Child Neurol 2013; 55: 167–72.
    • (2013) Dev Med Child Neurol , vol.55 , pp. 167-172
    • Numata, Y.1    Onuma, A.2    Kobayashi, Y.3
  • 11
    • 6444242582 scopus 로고    scopus 로고
    • Estimated frequency of genetic and nongenetic causes of congenital idiopathic cerebral palsy in west Sweden
    • Costeff H. Estimated frequency of genetic and nongenetic causes of congenital idiopathic cerebral palsy in west Sweden. Ann Hum Genet 2004; 68: 515–20.
    • (2004) Ann Hum Genet , vol.68 , pp. 515-520
    • Costeff, H.1
  • 12
    • 84936107712 scopus 로고    scopus 로고
    • Cerebral palsy: causes, pathways, and the role of genetic variants
    • MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015; 213: 779–88.
    • (2015) Am J Obstet Gynecol , vol.213 , pp. 779-788
    • MacLennan, A.H.1    Thompson, S.C.2    Gecz, J.3
  • 13
    • 84857058937 scopus 로고    scopus 로고
    • Genetic [corrected] insights into the causes and classification of [corrected] cerebral palsies
    • Moreno-De-Luca A, Ledbetter DH, Martin CL. Genetic [corrected] insights into the causes and classification of [corrected] cerebral palsies. Lancet Neurol 2012; 11: 283–92.
    • (2012) Lancet Neurol , vol.11 , pp. 283-292
    • Moreno-De-Luca, A.1    Ledbetter, D.H.2    Martin, C.L.3
  • 14
    • 84921937942 scopus 로고    scopus 로고
    • A diagnostic approach for cerebral palsy in the genomic era
    • Lee RW, Poretti A, Cohen JS, et al. A diagnostic approach for cerebral palsy in the genomic era. NeuroMol Med 2014; 16: 821–44.
    • (2014) NeuroMol Med , vol.16 , pp. 821-844
    • Lee, R.W.1    Poretti, A.2    Cohen, J.S.3
  • 15
    • 34247869927 scopus 로고    scopus 로고
    • A report: the definition and classification of cerebral palsy April 2006
    • Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol 2007; 109: 8–14.
    • (2007) Dev Med Child Neurol , vol.109 , pp. 8-14
    • Rosenbaum, P.1    Paneth, N.2    Leviton, A.3
  • 16
    • 68949177123 scopus 로고    scopus 로고
    • Copy number variations associated with idiopathic autism identified by whole-genome microarray-based comparative genomic hybridization
    • Cho SC, Yim SH, Yoo HK, et al. Copy number variations associated with idiopathic autism identified by whole-genome microarray-based comparative genomic hybridization. Psychiatr Genet 2009; 19: 177–85.
    • (2009) Psychiatr Genet , vol.19 , pp. 177-185
    • Cho, S.C.1    Yim, S.H.2    Yoo, H.K.3
  • 17
    • 44349186162 scopus 로고    scopus 로고
    • Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder
    • Christian SL, Brune CW, Sudi J, et al. Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol Psychiatry 2008; 63: 1111–17.
    • (2008) Biol Psychiatry , vol.63 , pp. 1111-1117
    • Christian, S.L.1    Brune, C.W.2    Sudi, J.3
  • 18
    • 84962890386 scopus 로고    scopus 로고
    • Advancing the understanding of autism disease mechanisms through genetics
    • de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016; 22: 345–61.
    • (2016) Nat Med , vol.22 , pp. 345-361
    • de la Torre-Ubieta, L.1    Won, H.2    Stein, J.L.3    Geschwind, D.H.4
  • 19
    • 33846633738 scopus 로고    scopus 로고
    • A model of cerebral palsy from fetal hypoxia-ischemia
    • Derrick M, Drobyshevsky A, Ji X, Tan S. A model of cerebral palsy from fetal hypoxia-ischemia. Stroke 2007; 38: 731–35.
    • (2007) Stroke , vol.38 , pp. 731-735
    • Derrick, M.1    Drobyshevsky, A.2    Ji, X.3    Tan, S.4
  • 21
    • 84928152189 scopus 로고    scopus 로고
    • Copy number variations in cryptogenic cerebral palsy
    • Segel R, Ben-Pazi H, Zeligson S, et al. Copy number variations in cryptogenic cerebral palsy. Neurology 2015; 84: 1660–68.
    • (2015) Neurology , vol.84 , pp. 1660-1668
    • Segel, R.1    Ben-Pazi, H.2    Zeligson, S.3
  • 22
    • 84938543113 scopus 로고    scopus 로고
    • Clinically relevant copy number variations detected in cerebral palsy
    • Oskoui M, Gazzellone MJ, Thiruvahindrapuram B, et al. Clinically relevant copy number variations detected in cerebral palsy. Nat Commun 2015; 6: 7949.
    • (2015) Nat Commun , vol.6 , pp. 7949
    • Oskoui, M.1    Gazzellone, M.J.2    Thiruvahindrapuram, B.3
  • 23
    • 84892914672 scopus 로고    scopus 로고
    • Mutations in gamma adducin are associated with inherited cerebral palsy
    • Kruer MC, Jepperson T, Dutta S, et al. Mutations in gamma adducin are associated with inherited cerebral palsy. Ann Neurol 2013; 74: 805–14.
    • (2013) Ann Neurol , vol.74 , pp. 805-814
    • Kruer, M.C.1    Jepperson, T.2    Dutta, S.3
  • 24
    • 67649587137 scopus 로고    scopus 로고
    • Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy
    • Verkerk AJ, Schot R, Dumee B, et al. Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 2009; 85: 40–52.
    • (2009) Am J Hum Genet , vol.85 , pp. 40-52
    • Verkerk, A.J.1    Schot, R.2    Dumee, B.3
  • 25
    • 79551508888 scopus 로고    scopus 로고
    • The association of genetic polymorphisms with cerebral palsy: a meta-analysis
    • Wu D, Zou YF, Xu XY, et al. The association of genetic polymorphisms with cerebral palsy: a meta-analysis. Dev Med Child Neurol 2011; 53: 217–25.
    • (2011) Dev Med Child Neurol , vol.53 , pp. 217-225
    • Wu, D.1    Zou, Y.F.2    Xu, X.Y.3
  • 27
    • 84902365913 scopus 로고    scopus 로고
    • The association of apolipoprotein E gene polymorphisms with cerebral palsy in Chinese infants
    • Xu Y, Wang H, Sun Y, et al. The association of apolipoprotein E gene polymorphisms with cerebral palsy in Chinese infants. Mol Genet Genomics 2014; 289: 411–16.
    • (2014) Mol Genet Genomics , vol.289 , pp. 411-416
    • Xu, Y.1    Wang, H.2    Sun, Y.3
  • 28
    • 84875053334 scopus 로고    scopus 로고
    • Apolipoprotein E polymorphisms and severity of cerebral palsy: a cross-sectional study in 255 children in Norway
    • Lien E, Andersen GL, Bao Y, et al. Apolipoprotein E polymorphisms and severity of cerebral palsy: a cross-sectional study in 255 children in Norway. Dev Med Child Neurol 2013; 55: 372–77.
    • (2013) Dev Med Child Neurol , vol.55 , pp. 372-377
    • Lien, E.1    Andersen, G.L.2    Bao, Y.3
  • 29
    • 84926247735 scopus 로고    scopus 로고
    • Child apolipoprotein E gene variants and risk of cerebral palsy: estimation from case-parent triads
    • Stoknes M, Lien E, Andersen GL, et al. Child apolipoprotein E gene variants and risk of cerebral palsy: estimation from case-parent triads. Eur J Paediatr Neurol 2015; 19: 286–91.
    • (2015) Eur J Paediatr Neurol , vol.19 , pp. 286-291
    • Stoknes, M.1    Lien, E.2    Andersen, G.L.3
  • 30
    • 55749098300 scopus 로고    scopus 로고
    • Association between apolipoprotein E genotype and cerebral palsy is not confirmed in a Caucasian population
    • McMichael GL, Gibson CS, Goldwater PN, et al. Association between apolipoprotein E genotype and cerebral palsy is not confirmed in a Caucasian population. Hum Genet 2008; 124: 411–16.
    • (2008) Hum Genet , vol.124 , pp. 411-416
    • McMichael, G.L.1    Gibson, C.S.2    Goldwater, P.N.3
  • 32
    • 84893688683 scopus 로고    scopus 로고
    • The apolipoprotein gene and recovery from brain injury among extremely preterm infants
    • Blackman JA, Gordish-Dressman H, Bao Y, Matsumoto JA, Sinkin RA. The apolipoprotein gene and recovery from brain injury among extremely preterm infants. Neonatology 2014; 105: 227–29.
    • (2014) Neonatology , vol.105 , pp. 227-229
    • Blackman, J.A.1    Gordish-Dressman, H.2    Bao, Y.3    Matsumoto, J.A.4    Sinkin, R.A.5
  • 33
    • 40649093087 scopus 로고    scopus 로고
    • Genetics considerations in cerebral palsy
    • Schaefer GB. Genetics considerations in cerebral palsy. Semin Pediatr Neurol 2008; 15: 21–26.
    • (2008) Semin Pediatr Neurol , vol.15 , pp. 21-26
    • Schaefer, G.B.1
  • 34
    • 84921341543 scopus 로고    scopus 로고
    • Systematic review: hereditary thrombophilia associated to pediatric strokes and cerebral palsy
    • Torres VM, Saddi VA. Systematic review: hereditary thrombophilia associated to pediatric strokes and cerebral palsy. J Pediatr (Rio J) 2015; 91: 22–29.
    • (2015) J Pediatr (Rio J) , vol.91 , pp. 22-29
    • Torres, V.M.1    Saddi, V.A.2
  • 35
    • 33750609375 scopus 로고    scopus 로고
    • Thrombophilias, perinatal stroke, and cerebral palsy
    • Nelson KB. Thrombophilias, perinatal stroke, and cerebral palsy. Clin Obstet Gynecol 2006; 49: 875–84.
    • (2006) Clin Obstet Gynecol , vol.49 , pp. 875-884
    • Nelson, K.B.1
  • 36
    • 84954271443 scopus 로고    scopus 로고
    • Restoration of visual function by enhancing conduction in regenerated axons
    • Bei F, Lee HH, Liu X, et al. Restoration of visual function by enhancing conduction in regenerated axons. Cell 2016; 164: 219–32.
    • (2016) Cell , vol.164 , pp. 219-232
    • Bei, F.1    Lee, H.H.2    Liu, X.3
  • 37
    • 84964489827 scopus 로고    scopus 로고
    • Association between osteopontin gene polymorphisms and cerebral palsy in a Chinese population
    • Shang Q, Zhou C, Liu D, et al. Association between osteopontin gene polymorphisms and cerebral palsy in a Chinese population. NeuroMol Med 2016; 18: 232–38.
    • (2016) NeuroMol Med , vol.18 , pp. 232-238
    • Shang, Q.1    Zhou, C.2    Liu, D.3
  • 38
    • 84895920717 scopus 로고    scopus 로고
    • A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders
    • Jacquemont S, Coe BP, Hersch M, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet 2014; 94: 415–25.
    • (2014) Am J Hum Genet , vol.94 , pp. 415-425
    • Jacquemont, S.1    Coe, B.P.2    Hersch, M.3
  • 39
    • 29644440839 scopus 로고    scopus 로고
    • Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy
    • Lerer I, Sagi M, Meiner V, Cohen T, Zlotogora J, Abeliovich D. Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet 2005; 14: 3911–20.
    • (2005) Hum Mol Genet , vol.14 , pp. 3911-3920
    • Lerer, I.1    Sagi, M.2    Meiner, V.3    Cohen, T.4    Zlotogora, J.5    Abeliovich, D.6
  • 40
    • 84938557247 scopus 로고    scopus 로고
    • Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy
    • McMichael G, Bainbridge MN, Haan E, et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry 2015; 20: 176–82.
    • (2015) Mol Psychiatry , vol.20 , pp. 176-182
    • McMichael, G.1    Bainbridge, M.N.2    Haan, E.3
  • 41
    • 84936791616 scopus 로고    scopus 로고
    • De novo point mutations in patients diagnosed with ataxic cerebral palsy
    • Parolin Schnekenberg R, Perkins EM, Miller JW, et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 2015; 138: 1817–32.
    • (2015) Brain , vol.138 , pp. 1817-1832
    • Parolin Schnekenberg, R.1    Perkins, E.M.2    Miller, J.W.3
  • 42
    • 79953232008 scopus 로고    scopus 로고
    • Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13)
    • Figueroa KP, Waters MF, Garibyan V, et al. Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13). PLoS ONE 2011; 6: e17811.
    • (2011) PLoS ONE , vol.6
    • Figueroa, K.P.1    Waters, M.F.2    Garibyan, V.3
  • 43
    • 84872021463 scopus 로고    scopus 로고
    • Recessive mutations in SPTBN2 implicate beta-III spectrin in both cognitive and motor development
    • Lise S, Clarkson Y, Perkins E, et al. Recessive mutations in SPTBN2 implicate beta-III spectrin in both cognitive and motor development. PLoS Genet 2012; 8: e1003074.
    • (2012) PLoS Genet , vol.8
    • Lise, S.1    Clarkson, Y.2    Perkins, E.3
  • 44
    • 84866143212 scopus 로고    scopus 로고
    • Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia
    • Huang L, Chardon JW, Carter MT, et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 2012; 7: 67.
    • (2012) Orphanet J Rare Dis , vol.7 , pp. 67
    • Huang, L.1    Chardon, J.W.2    Carter, M.T.3
  • 45
    • 67650494721 scopus 로고    scopus 로고
    • A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane
    • Kakinuma N, Kiyama R. A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane. Biochem Biophys Res Commun 2009; 386: 639–44.
    • (2009) Biochem Biophys Res Commun , vol.386 , pp. 639-644
    • Kakinuma, N.1    Kiyama, R.2
  • 46
    • 84915758557 scopus 로고    scopus 로고
    • Kank is an EB1 interacting protein that localises to muscle-tendon attachment sites in Drosophila
    • Clohisey SM, Dzhindzhev NS, Ohkura H. Kank is an EB1 interacting protein that localises to muscle-tendon attachment sites in Drosophila. PLoS ONE 2014; 9: e106112.
    • (2014) PLoS ONE , vol.9
    • Clohisey, S.M.1    Dzhindzhev, N.S.2    Ohkura, H.3
  • 47
    • 84878658920 scopus 로고    scopus 로고
    • Familial KANK1 deletion that does not follow expected imprinting pattern
    • Vanzo RJ, Martin MM, Sdano MR, South ST. Familial KANK1 deletion that does not follow expected imprinting pattern. Eur J Med Genet 2013; 56: 256–59.
    • (2013) Eur J Med Genet , vol.56 , pp. 256-259
    • Vanzo, R.J.1    Martin, M.M.2    Sdano, M.R.3    South, S.T.4
  • 48
    • 84930404195 scopus 로고    scopus 로고
    • KANK deficiency leads to podocyte dysfunction and nephrotic syndrome
    • Gee HY, Zhang F, Ashraf S, et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 2015; 125: 2375–84.
    • (2015) J Clin Invest , vol.125 , pp. 2375-2384
    • Gee, H.Y.1    Zhang, F.2    Ashraf, S.3
  • 49
    • 79551651120 scopus 로고    scopus 로고
    • Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability
    • Moreno-De-Luca A, Helmers SL, Mao H, et al. Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet 2011; 48: 141–44.
    • (2011) J Med Genet , vol.48 , pp. 141-144
    • Moreno-De-Luca, A.1    Helmers, S.L.2    Mao, H.3
  • 50
    • 79958820932 scopus 로고    scopus 로고
    • Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature
    • Abou Jamra R, Philippe O, Raas-Rothschild A, et al. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet 2011; 88: 788–95.
    • (2011) Am J Hum Genet , vol.88 , pp. 788-795
    • Abou Jamra, R.1    Philippe, O.2    Raas-Rothschild, A.3
  • 51
    • 2342662620 scopus 로고    scopus 로고
    • Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate
    • Follett PL, Deng W, Dai W, et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 2004; 24: 4412–20.
    • (2004) J Neurosci , vol.24 , pp. 4412-4420
    • Follett, P.L.1    Deng, W.2    Dai, W.3
  • 52
    • 40249109892 scopus 로고    scopus 로고
    • Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4
    • Matsuda S, Miura E, Matsuda K, et al. Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 2008; 57: 730–45.
    • (2008) Neuron , vol.57 , pp. 730-745
    • Matsuda, S.1    Miura, E.2    Matsuda, K.3
  • 53
    • 84859723922 scopus 로고    scopus 로고
    • The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant
    • Back SA, Riddle A, Dean J, Hohimer AR. The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant. Neurotherapeutics 2012; 9: 359–70.
    • (2012) Neurotherapeutics , vol.9 , pp. 359-370
    • Back, S.A.1    Riddle, A.2    Dean, J.3    Hohimer, A.R.4
  • 54
    • 84899986984 scopus 로고    scopus 로고
    • Unmyelinated axon loss with postnatal hypertonia after fetal hypoxia
    • Drobyshevsky A, Jiang R, Lin L, et al. Unmyelinated axon loss with postnatal hypertonia after fetal hypoxia. Ann Neurol 2014; 75: 533–41.
    • (2014) Ann Neurol , vol.75 , pp. 533-541
    • Drobyshevsky, A.1    Jiang, R.2    Lin, L.3
  • 55
    • 69249249242 scopus 로고    scopus 로고
    • Fetal hypoxia insults and patterns of brain injury: insights from animal models
    • Gunn AJ, Bennet L. Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol 2009; 36: 579–93.
    • (2009) Clin Perinatol , vol.36 , pp. 579-593
    • Gunn, A.J.1    Bennet, L.2
  • 57
    • 84876798186 scopus 로고    scopus 로고
    • The zebrafish reference genome sequence and its relationship to the human genome
    • Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496: 498–503.
    • (2013) Nature , vol.496 , pp. 498-503
    • Howe, K.1    Clark, M.D.2    Torroja, C.F.3
  • 58
    • 84957825050 scopus 로고    scopus 로고
    • Zebrafish and Medaka: new model organisms for modern biomedical research
    • Lin CY, Chiang CY, Tsai HJ. Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci 2016; 23: 19.
    • (2016) J Biomed Sci , vol.23 , pp. 19
    • Lin, C.Y.1    Chiang, C.Y.2    Tsai, H.J.3
  • 59
    • 84961757529 scopus 로고    scopus 로고
    • Drosophila tools and assays for the study of human diseases
    • Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Dis Model Mech 2016; 9: 235–44.
    • (2016) Dis Model Mech , vol.9 , pp. 235-244
    • Ugur, B.1    Chen, K.2    Bellen, H.J.3
  • 60
    • 84900482779 scopus 로고    scopus 로고
    • The actin cytoskeleton in memory formation
    • Lamprecht R. The actin cytoskeleton in memory formation. Prog Neurobiol 2014; 117: 1–19.
    • (2014) Prog Neurobiol , vol.117 , pp. 1-19
    • Lamprecht, R.1
  • 61
    • 84888144863 scopus 로고    scopus 로고
    • The role of the actin cytoskeleton in regulating Drosophila behavior
    • Ojelade SA, Acevedo SF, Rothenfluh A. The role of the actin cytoskeleton in regulating Drosophila behavior. Rev Neurosci 2013; 24: 471–84.
    • (2013) Rev Neurosci , vol.24 , pp. 471-484
    • Ojelade, S.A.1    Acevedo, S.F.2    Rothenfluh, A.3
  • 62
    • 84897898119 scopus 로고    scopus 로고
    • Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKgamma mutant Loechrig
    • Cook M, Bolkan BJ, Kretzschmar D. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKgamma mutant Loechrig. PLoS ONE 2014; 9: e89847.
    • (2014) PLoS ONE , vol.9
    • Cook, M.1    Bolkan, B.J.2    Kretzschmar, D.3
  • 63
    • 84866128210 scopus 로고    scopus 로고
    • Increased RhoA prenylation in the loechrig (loe) mutant leads to progressive neurodegeneration
    • Cook M, Mani P, Wentzell JS, Kretzschmar D. Increased RhoA prenylation in the loechrig (loe) mutant leads to progressive neurodegeneration. PLoS ONE 2012; 7: e44440.
    • (2012) PLoS ONE , vol.7
    • Cook, M.1    Mani, P.2    Wentzell, J.S.3    Kretzschmar, D.4
  • 64
    • 0026088977 scopus 로고
    • Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease
    • Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349: 704–06.
    • (1991) Nature , vol.349 , pp. 704-706
    • Goate, A.1    Chartier-Harlin, M.C.2    Mullan, M.3
  • 65
    • 0030744876 scopus 로고    scopus 로고
    • Mutation in the alpha-synuclein gene identified in families with Parkinson's disease
    • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997; 276: 2045–47.
    • (1997) Science , vol.276 , pp. 2045-2047
    • Polymeropoulos, M.H.1    Lavedan, C.2    Leroy, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.