메뉴 건너뛰기




Volumn 1, Issue 7, 2016, Pages

Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes

Author keywords

[No Author keywords available]

Indexed keywords

OSMOSIS; TEMPERATURE;

EID: 85009071745     PISSN: None     EISSN: 20587546     Source Type: Journal    
DOI: 10.1038/nenergy.2016.90     Document Type: Article
Times cited : (253)

References (46)
  • 1
    • 84865120266 scopus 로고    scopus 로고
    • Opportunities and challenges for a sustainable energy future
    • Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294-303 (2012).
    • (2012) Nature , vol.488 , pp. 294-303
    • Chu, S.1    Majumdar, A.2
  • 2
    • 77957067873 scopus 로고    scopus 로고
    • A review of thermodynamic cycles and working fluids for the conversion of low-grade heat
    • Chen, H., Goswami, D. Y. & Stefanakos, E. K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev. 14, 3059-3067 (2010).
    • (2010) Renew. Sustain. Energy Rev. , vol.14 , pp. 3059-3067
    • Chen, H.1    Goswami, D.Y.2    Stefanakos, E.K.3
  • 3
    • 84937458564 scopus 로고    scopus 로고
    • Quantity quality, and availability of waste heat from United States thermal power generation
    • Gingerich, D. B. & Mauter, M. S. Quantity, quality, and availability of waste heat from United States thermal power generation. Environ. Sci. Technol. 49, 8297-8306 (2015).
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 8297-8306
    • Gingerich, D.B.1    Mauter, M.S.2
  • 5
    • 84860846370 scopus 로고    scopus 로고
    • Temperature-at-depth maps for the conterminous U.S. And geothermal resource estimates
    • Blackwell, D. et al. Temperature-at-depth maps for the conterminous U.S. and geothermal resource estimates. Geotherm. Resour. Counc. Trans. 35, 1545-1550 (2011).
    • (2011) Geotherm. Resour. Counc. Trans. , vol.35 , pp. 1545-1550
    • Blackwell, D.1
  • 6
    • 0347541237 scopus 로고    scopus 로고
    • Advances in solar thermal electricity technology
    • Mills, D. Advances in solar thermal electricity technology. Sol. Energy 76, 19-31 (2004).
    • (2004) Sol. Energy , vol.76 , pp. 19-31
    • Mills, D.1
  • 7
    • 0035997839 scopus 로고    scopus 로고
    • Geothermal energy technology and current status: An overview
    • Barbier, E. Geothermal energy technology and current status: an overview. Renew. Sustain. Energy Rev. 6, 3-65 (2002).
    • (2002) Renew. Sustain. Energy Rev. , vol.6 , pp. 3-65
    • Barbier, E.1
  • 8
    • 80051796336 scopus 로고    scopus 로고
    • Low-grade heat conversion into power using organic Rankine cycles-A review of various applications
    • Tchanche, B. F., Lambrinos, G., Frangoudakis, A. & Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles-a review of various applications. Renew. Sustain. Energy Rev. 15, 3963-3979 (2011).
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , pp. 3963-3979
    • Tchanche, B.F.1    Lambrinos, G.2    Frangoudakis, A.3    Papadakis, G.4
  • 9
    • 0031011385 scopus 로고    scopus 로고
    • A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat
    • Hung, T. C., Shai, T. Y. & Wang, S. K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 22, 661-667 (1997).
    • (1997) Energy , vol.22 , pp. 661-667
    • Hung, T.C.1    Shai, T.Y.2    Wang, S.K.3
  • 10
    • 84860224290 scopus 로고    scopus 로고
    • A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation
    • Vélez, F. et al. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew. Sustain. Energy Rev. 16, 4175-4189 (2012).
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 4175-4189
    • Vélez, F.1
  • 11
    • 51749114885 scopus 로고    scopus 로고
    • Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
    • Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457-1461 (2008).
    • (2008) Science , vol.321 , pp. 1457-1461
    • Bell, L.E.1
  • 13
    • 84919680820 scopus 로고    scopus 로고
    • A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power
    • Zhang, F., Liu, J., Yang, W. & Logan, B. E. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy Environ. Sci. 8, 343-349 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 343-349
    • Zhang, F.1    Liu, J.2    Yang, W.3    Logan, B.E.4
  • 14
    • 84924935566 scopus 로고    scopus 로고
    • Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures
    • Zhang, F., LaBarge, N., Yang, W., Liu, J. & Logan, B. E. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures. ChemSusChem 8, 1043-1048 (2015).
    • (2015) ChemSusChem , vol.8 , pp. 1043-1048
    • Zhang, F.1    LaBarge, N.2    Yang, W.3    Liu, J.4    Logan, B.E.5
  • 16
    • 77953648349 scopus 로고    scopus 로고
    • Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell
    • Hu, R. et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10, 838-846 (2010).
    • (2010) Nano Lett. , vol.10 , pp. 838-846
    • Hu, R.1
  • 17
    • 84901348911 scopus 로고    scopus 로고
    • An electrochemical system for efficiently harvesting low-grade heat energy
    • Lee, S. W. et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nature Commun. 5, 3942 (2014).
    • (2014) Nature Commun. , vol.5 , pp. 3942
    • Lee, S.W.1
  • 18
    • 84882434179 scopus 로고    scopus 로고
    • High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting
    • Abraham, T. J., MacFarlane, D. R. & Pringle, J. M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6, 2639-2645 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2639-2645
    • Abraham, T.J.1    MacFarlane, D.R.2    Pringle, J.M.3
  • 19
    • 84898902616 scopus 로고    scopus 로고
    • Nanofluidics: Bubbles as osmotic membranes
    • Bocquet, L. Nanofluidics: bubbles as osmotic membranes. Nature Nanotech. 9, 249-251 (2014).
    • (2014) Nature Nanotech. , vol.9 , pp. 249-251
    • Bocquet, L.1
  • 20
    • 84856575421 scopus 로고    scopus 로고
    • Membrane distillation: A comprehensive review
    • Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2-18 (2012).
    • (2012) Desalination , vol.287 , pp. 2-18
    • Alkhudhiri, A.1    Darwish, N.2    Hilal, N.3
  • 22
    • 84898909173 scopus 로고    scopus 로고
    • Nanofluidic transport governed by the liquid/vapour interface
    • Lee, J., Laoui, T. & Karnik, R. Nanofluidic transport governed by the liquid/vapour interface. Nature Nanotech. 9, 317-323 (2014).
    • (2014) Nature Nanotech. , vol.9 , pp. 317-323
    • Lee, J.1    Laoui, T.2    Karnik, R.3
  • 23
    • 33750012028 scopus 로고    scopus 로고
    • A framework for better understanding membrane distillation separation process
    • El-Bourawi, M. S., Ding, Z., Ma, R. & Khayet, M. A framework for better understanding membrane distillation separation process. J. Membr. Sci. 285, 4-29 (2006).
    • (2006) J. Membr. Sci. , vol.285 , pp. 4-29
    • El-Bourawi, M.S.1    Ding, Z.2    Ma, R.3    Khayet, M.4
  • 24
    • 0346887127 scopus 로고    scopus 로고
    • Experimental study of desalination using direct contact membrane distillation: A new approach to flux enhancement
    • Cath, T. Y., Adams, V. D. & Childress, A. E. Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement. J. Membr. Sci. 228, 5-16 (2004).
    • (2004) J. Membr. Sci. , vol.228 , pp. 5-16
    • Cath, T.Y.1    Adams, V.D.2    Childress, A.E.3
  • 25
    • 0345192084 scopus 로고
    • Thermoosmosis in semipermeable membranes
    • Dariel, M. & Kedem, O. Thermoosmosis in semipermeable membranes. J. Phys. Chem. 79, 336-342 (1975).
    • (1975) J. Phys. Chem. , vol.79 , pp. 336-342
    • Dariel, M.1    Kedem, O.2
  • 26
    • 0018220553 scopus 로고
    • Thermoosmosis of water through cellulose acetate membranes
    • Mengual, J. I. & Aguilar, J. Thermoosmosis of water through cellulose acetate membranes. J. Membr. Sci. 4, 209-219 (1978).
    • (1978) J. Membr. Sci. , vol.4 , pp. 209-219
    • Mengual, J.I.1    Aguilar, J.2
  • 27
    • 0025513748 scopus 로고
    • Mass transfer through polymer membranes due to a temperature gradient
    • Tasaka, M., Mizuta, T. & Sekiguchi, O. Mass transfer through polymer membranes due to a temperature gradient. J. Membr. Sci. 54, 191-204 (1990).
    • (1990) J. Membr. Sci. , vol.54 , pp. 191-204
    • Tasaka, M.1    Mizuta, T.2    Sekiguchi, O.3
  • 28
    • 60049096831 scopus 로고    scopus 로고
    • Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Thermo-osmosis in membranes
    • Kim, S. & Mench, M. M. Investigation of temperature-driven water transport in polymer electrolyte fuel cell: thermo-osmosis in membranes. J. Membr. Sci. 328, 113-120 (2009).
    • (2009) J. Membr. Sci. , vol.328 , pp. 113-120
    • Kim, S.1    Mench, M.M.2
  • 30
    • 77956313498 scopus 로고    scopus 로고
    • Desalination of water by vapor-phase transport through hydrophobic nanopores
    • Lee, J. & Karnik, R. Desalination of water by vapor-phase transport through hydrophobic nanopores. J. Appl. Phys. 108, 044315 (2010).
    • (2010) J. Appl. Phys. , vol.108 , pp. 044315
    • Lee, J.1    Karnik, R.2
  • 31
    • 0022797585 scopus 로고
    • Heat and mass transfer in membrane distillation
    • Schofield, R. W., Fane, A. G. & Fell, C. J. D. Heat and mass transfer in membrane distillation. J. Membr. Sci. 33, 299-313 (1987).
    • (1987) J. Membr. Sci. , vol.33 , pp. 299-313
    • Schofield, R.W.1    Fane, A.G.2    Fell, C.J.D.3
  • 32
    • 79955466900 scopus 로고    scopus 로고
    • Membranes and theoretical modeling of membrane distillation: A review
    • Khayet, M. Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164, 56-88 (2011).
    • (2011) Adv. Colloid Interface Sci. , vol.164 , pp. 56-88
    • Khayet, M.1
  • 33
    • 84862777512 scopus 로고    scopus 로고
    • Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells
    • Cusick, R. D., Kim, Y. & Logan, B. E. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science 335, 1474-1477 (2012).
    • (2012) Science , vol.335 , pp. 1474-1477
    • Cusick, R.D.1    Kim, Y.2    Logan, B.E.3
  • 34
    • 80055044579 scopus 로고    scopus 로고
    • Membrane-based production of salinity-gradient power
    • Ramon, G. Z., Feinberg, B. J. & Hoek, E. M. V. Membrane-based production of salinity-gradient power. Energy Environ. Sci. 4, 4423-4434 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 4423-4434
    • Ramon, G.Z.1    Feinberg, B.J.2    Hoek, E.M.V.3
  • 35
    • 84889586312 scopus 로고    scopus 로고
    • Osmotic power with pressure retarded osmosis: Theory, performance and trends-A review
    • Helfer, F., Lemckert, C. & Anissimov, Y. G. Osmotic power with pressure retarded osmosis: theory, performance and trends-a review. J. Membr. Sci. 453, 337-358 (2014).
    • (2014) J. Membr. Sci. , vol.453 , pp. 337-358
    • Helfer, F.1    Lemckert, C.2    Anissimov, Y.G.3
  • 37
    • 0010066704 scopus 로고    scopus 로고
    • Mass transfer within the gas-phase of porous media
    • Kast, W. & Hohenthanner, C. R. Mass transfer within the gas-phase of porous media. Int. J. Heat Mass Transfer 43, 807-823 (2000).
    • (2000) Int. J. Heat Mass Transfer , vol.43 , pp. 807-823
    • Kast, W.1    Hohenthanner, C.R.2
  • 39
    • 0034666863 scopus 로고    scopus 로고
    • Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions
    • García-Payo, M., Izquierdo-Gil, M. & Fernández-Pineda, C. Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions. J. Colloid Interface Sci. 230, 420-431 (2000).
    • (2000) J. Colloid Interface Sci. , vol.230 , pp. 420-431
    • García-Payo, M.1    Izquierdo-Gil, M.2    Fernández-Pineda, C.3
  • 40
    • 84890408304 scopus 로고    scopus 로고
    • Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling
    • Lin, S., Yip, N. Y. & Elimelech, M. Direct contact membrane distillation with heat recovery: thermodynamic insights from module scale modeling. J. Membr. Sci. 453, 498-515 (2014).
    • (2014) J. Membr. Sci. , vol.453 , pp. 498-515
    • Lin, S.1    Yip, N.Y.2    Elimelech, M.3
  • 41
    • 84899825642 scopus 로고    scopus 로고
    • Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: Thermodynamic analysis and energy efficiency
    • Lin, S., Yip, N. Y., Cath, T. Y., Osuji, C. O. & Elimelech, M. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. Environ. Sci. Technol. 48, 5306-5313 (2014).
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 5306-5313
    • Lin, S.1    Yip, N.Y.2    Cath, T.Y.3    Osuji, C.O.4    Elimelech, M.5
  • 42
    • 34848873159 scopus 로고    scopus 로고
    • A novel ammonia-carbon dioxide osmotic heat engine for power generation
    • McGinnis, R. L., McCutcheon, J. R. & Elimelech, M. A novel ammonia-carbon dioxide osmotic heat engine for power generation. J. Membr. Sci. 305, 13-19 (2007).
    • (2007) J. Membr. Sci. , vol.305 , pp. 13-19
    • McGinnis, R.L.1    McCutcheon, J.R.2    Elimelech, M.3
  • 43
    • 84945312901 scopus 로고    scopus 로고
    • Selectivity and mass transfer limitations in pressure-retarded osmosis at high concentrations and increased operating pressures
    • Straub, A. P., Osuji, C. O., Cath, T. Y. & Elimelech, M. Selectivity and mass transfer limitations in pressure-retarded osmosis at high concentrations and increased operating pressures. Environ. Sci. Technol. 49, 12551-12559 (2015).
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 12551-12559
    • Straub, A.P.1    Osuji, C.O.2    Cath, T.Y.3    Elimelech, M.4
  • 44
    • 36749013593 scopus 로고    scopus 로고
    • Heat and mass transfer analysis in direct contact membrane distillation
    • Qtaishat, M., Matsuura, T., Kruczek, B. & Khayet, A. Heat and mass transfer analysis in direct contact membrane distillation. Desalination 219, 272-292 (2008).
    • (2008) Desalination , vol.219 , pp. 272-292
    • Qtaishat, M.1    Matsuura, T.2    Kruczek, B.3    Khayet, A.4
  • 45
    • 0037440544 scopus 로고    scopus 로고
    • Heat transport and membrane distillation coefficients in direct contact membrane distillation
    • Phattaranawik, J., Jiraratananon, R. & Fane, A. G. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Membr. Sci. 212, 177-193 (2003).
    • (2003) J. Membr. Sci. , vol.212 , pp. 177-193
    • Phattaranawik, J.1    Jiraratananon, R.2    Fane, A.G.3
  • 46
    • 0035965628 scopus 로고    scopus 로고
    • Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation
    • Khayet, M. & Matsuura, T. Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation. Ind. Eng. Chem. Res. 40, 5710-5718 (2001).
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 5710-5718
    • Khayet, M.1    Matsuura, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.