메뉴 건너뛰기




Volumn 2, Issue 2, 2008, Pages 295-326

Multivariate normal approximation in geometric probability

Author keywords

Central limit theorem; Geometric probability; Multivariate normal approximation; Nearest neighbour graph; Stabilization; Stein s method

Indexed keywords


EID: 85008852699     PISSN: 15598608     EISSN: 15598616     Source Type: Journal    
DOI: 10.1080/15598608.2008.10411876     Document Type: Article
Times cited : (14)

References (24)
  • 1
    • 0003283056 scopus 로고
    • Handbook of Mathematical Functions, National Bureau of Standards
    • U.S. Government Printing Office, Washington D.C
    • Abramowitz, M., Stegun, I. A. (eds.), 1965. Handbook of Mathematical Functions, National Bureau of Standards. Applied Mathematics Series 55. U.S. Government Printing Office, Washington D.C.
    • (1965) Applied Mathematics Series , vol.55
    • Abramowitz, M.1    Stegun, I.A.2
  • 2
    • 0000380180 scopus 로고
    • On central limit theorems in geometrical probability
    • Avram, F., Bertsimas, D., 1993. On central limit theorems in geometrical probability. Ann. Appl. Probab. 3, 1033–1046.
    • (1993) Ann. Appl. Probab , vol.3 , pp. 1033-1046
    • Avram, F.1    Bertsimas, D.2
  • 3
    • 0000193451 scopus 로고
    • On normal approximations of distributions in terms of dependency graphs
    • Baldi, P., Rinott, Y., 1989. On normal approximations of distributions in terms of dependency graphs. Ann. Probab. 17, 1646–1650.
    • (1989) Ann. Probab , vol.17 , pp. 1646-1650
    • Baldi, P.1    Rinott, Y.2
  • 5
    • 14544281094 scopus 로고    scopus 로고
    • Gaussian limits for random measures in geometric probability
    • Baryshnikov, Yu., Yukich, J. E., 2005. Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15, 213–253.
    • (2005) Ann. Appl. Probab , vol.15 , pp. 213-253
    • Baryshnikov, Y.U.1    Yukich, J.E.2
  • 6
    • 4544375370 scopus 로고    scopus 로고
    • Normal approximation under local dependence
    • Chen, L. H. Y., Shao, Q.-M., 2004. Normal approximation under local dependence. Ann. Probab. 32, 1985–2028.
    • (2004) Ann. Probab , vol.32 , pp. 1985-2028
    • Chen, L.H.Y.1    Shao, Q.-M.2
  • 8
    • 0001354702 scopus 로고
    • On the rate of convergence in the multivariate CLT
    • Götze, F., 1991. On the rate of convergence in the multivariate CLT. Ann. Probab. 19, 724–739.
    • (1991) Ann. Probab , vol.19 , pp. 724-739
    • Götze, F.1
  • 9
    • 0030535645 scopus 로고    scopus 로고
    • On multivariate normal approximations by Stein’s method
    • Goldstein, L., Rinott, Y., 1996. On multivariate normal approximations by Stein’s method. J. Appl. Probab. 33, 1–17.
    • (1996) J. Appl. Probab , vol.33 , pp. 1-17
    • Goldstein, L.1    Rinott, Y.2
  • 10
    • 0030501338 scopus 로고    scopus 로고
    • The central limit theorem for weighted minimal spanning trees on random points
    • Kesten, H., Lee, S., 1996. The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab. 6, 495–527.
    • (1996) Ann. Appl. Probab , vol.6 , pp. 495-527
    • Kesten, H.1    Lee, S.2
  • 11
    • 0003523893 scopus 로고
    • Oxford Studies in Probability 3, Clarendon Press, Oxford
    • Kingman, J. F. C., 1993. Poisson Processes, Oxford Studies in Probability 3, Clarendon Press, Oxford.
    • (1993) Poisson Processes
    • Kingman, J.F.C.1
  • 12
    • 0012535670 scopus 로고    scopus 로고
    • Oxford Studies in Probability 6, Clarendon Press, Oxford
    • Penrose, M., 2003. Random Geometric Graphs, Oxford Studies in Probability 6, Clarendon Press, Oxford.
    • (2003) Random Geometric Graphs
    • Penrose, M.1
  • 13
    • 27644525072 scopus 로고    scopus 로고
    • Multivariate spatial central limit theorems with applications to percolation and spatial graphs
    • Penrose, M. D., 2005a. Multivariate spatial central limit theorems with applications to percolation and spatial graphs. Ann. Probab. 33, 1945–1991.
    • (2005) Ann. Probab , vol.33 , pp. 1945-1991
    • Penrose, M.D.1
  • 15
    • 34547700101 scopus 로고    scopus 로고
    • Gaussian limits for random geometric measures
    • Penrose, M. D., 2007a. Gaussian limits for random geometric measures. Electron. J. Probab. 12 (paper 35), 989–1035.
    • (2007) Electron. J. Probab , vol.12 , pp. 989-1035
    • Penrose, M.D.1
  • 16
    • 47249090814 scopus 로고    scopus 로고
    • Laws of large numbers in stochastic geometry with statistical applications
    • Penrose, M. D., 2007b. Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13, 1124–1150.
    • (2007) Bernoulli , vol.13 , pp. 1124-1150
    • Penrose, M.D.1
  • 17
    • 52349123319 scopus 로고    scopus 로고
    • Limit theory for the random on-line nearest-neighbour graph
    • Penrose, M. D., Wade, A. R., 2008. Limit theory for the random on-line nearest-neighbour graph. Random Structures Algorithms 32, 125–156.
    • (2008) Random Structures Algorithms , vol.32 , pp. 125-156
    • Penrose, M.D.1    Wade, A.R.2
  • 18
    • 0035497809 scopus 로고    scopus 로고
    • Central limit theorems for some graphs in computational geometry
    • Penrose, M. D., Yukich, J. E., 2001. Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11, 1005–1041.
    • (2001) Ann. Appl. Probab , vol.11 , pp. 1005-1041
    • Penrose, M.D.1    Yukich, J.E.2
  • 19
    • 0036117358 scopus 로고    scopus 로고
    • Limit theory for random sequential packing and deposition
    • Penrose, M. D., Yukich, J. E., 2002. Limit theory for random sequential packing and deposition. Ann. Appl. Probab. 12, 272–301.
    • (2002) Ann. Appl. Probab , vol.12 , pp. 272-301
    • Penrose, M.D.1    Yukich, J.E.2
  • 20
    • 0037274513 scopus 로고    scopus 로고
    • Weak laws of large numbers in geometric probability
    • Penrose, M. D., Yukich, J. E., 2003. Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13, 277–303.
    • (2003) Ann. Appl. Probab , vol.13 , pp. 277-303
    • Penrose, M.D.1    Yukich, J.E.2
  • 21
    • 27644503893 scopus 로고    scopus 로고
    • Normal approximation in geometric probability. In Stein’s Method and Applications
    • Louis H. Y. Chen, A. D. Barbour, World Scientific, Singapore
    • Penrose, M. D., Yukich, J. E., 2005. Normal approximation in geometric probability. In Stein’s Method and Applications, eds. Louis H. Y. Chen, A. D. Barbour, Lecture Notes Series, Institute for Mathematical Sciences, Vol. 5, World Scientific, Singapore.
    • (2005) Lecture Notes Series, Institute for Mathematical Sciences , vol.5
    • Penrose, M.D.1    Yukich, J.E.2
  • 22
    • 0030075451 scopus 로고    scopus 로고
    • A multivariate CLT for local dependence with n logn rate and applications to multivariate graph related statistics
    • −1/2 logn rate and applications to multivariate graph related statistics. J. Multivariate Anal. 56, 333–350.
    • (1996) J. Multivariate Anal , vol.56 , pp. 333-350
    • Rinott, Y.1    Rotar, V.2
  • 24
    • 34547700829 scopus 로고    scopus 로고
    • Explicit laws of large numbers for random nearest-neighbour-type graphs
    • Wade, A. R., 2007. Explicit laws of large numbers for random nearest-neighbour-type graphs. Adv. Appl. Probab. 39, 326–342.
    • (2007) Adv. Appl. Probab , vol.39 , pp. 326-342
    • Wade, A.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.