-
1
-
-
56549108407
-
Epigenetic regulation of centromeric chromatin: Old dogs, new tricks?
-
Allshire, R.C., and G.H. Karpen. 2008. Epigenetic regulation of centromeric chromatin: Old dogs, new tricks? Nat. Rev. Genet. 9:923-937. http://dx.doi.org/10.1038/nrg2466
-
(2008)
Nat. Rev. Genet
, vol.9
, pp. 923-937
-
-
Allshire, R.C.1
Karpen, G.H.2
-
2
-
-
67749147135
-
The CENP-S complex is essential for the stable assembly of outer kinetochore structure
-
Amano, M., A. Suzuki, T. Hori, C. Backer, K. Okawa, I.M. Cheeseman, and T. Fukagawa. 2009. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol. 186:173-182. http://dx.doi.org/10.1083/jcb.200903100
-
(2009)
J. Cell Biol
, vol.186
, pp. 173-182
-
-
Amano, M.1
Suzuki, A.2
Hori, T.3
Backer, C.4
Okawa, K.5
Cheeseman, I.M.6
Fukagawa, T.7
-
3
-
-
79951709224
-
Epigenetic centromere propagation and the nature of CENP-a nucleosomes
-
Black, B.E., and D.W. Cleveland. 2011. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell. 144:471-479. http://dx.doi.org/10.1016/j.cell.2011.02.002
-
(2011)
Cell
, vol.144
, pp. 471-479
-
-
Black, B.E.1
Cleveland, D.W.2
-
4
-
-
65249129208
-
HJU RP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres
-
Dunleavy, E.M., D. Roche, H. Tagami, N. Lacoste, D. Ray-Gallet, Y. Nakamura, Y. Daigo, Y. Nakatani, and G. Almouzni-Pettinotti. 2009. HJU RP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell. 137:485-497. http://dx.doi.org/10.1016/j.cell.2009.02.040
-
(2009)
Cell
, vol.137
, pp. 485-497
-
-
Dunleavy, E.M.1
Roche, D.2
Tagami, H.3
Lacoste, N.4
Ray-Gallet, D.5
Nakamura, Y.6
Daigo, Y.7
Nakatani, Y.8
Almouzni-Pettinotti, G.9
-
5
-
-
0345293849
-
A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA
-
du Sart, D., M.R. Cancilla, E. Earle, J.I. Mao, R. Saffery, K.M. Tainton, P. Kalitsis, J. Martyn, A.E. Barry, and K.H. Choo. 1997. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat. Genet. 16:144-153. http://dx.doi.org/10.1038/ng0697-144
-
(1997)
Nat. Genet
, vol.16
, pp. 144-153
-
-
du Sart, D.1
Cancilla, M.R.2
Earle, E.3
Mao, J.I.4
Saffery, R.5
Tainton, K.M.6
Kalitsis, P.7
Martyn, J.8
Barry, A.E.9
Choo, K.H.10
-
6
-
-
65249115338
-
Centromere-specific assembly of CENP-a nucleosomes is mediated by HJU RP
-
Foltz, D.R., L.E. Jansen, A.O. Bailey, J.R. Yates III, E.A. Bassett, S. Wood, B.E. Black, and D.W. Cleveland. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJU RP. Cell. 137:472-484. http://dx.doi.org/10.1016/j.cell.2009.02.039
-
(2009)
Cell
, vol.137
, pp. 472-484
-
-
Foltz, D.R.1
Jansen, L.E.2
Bailey, A.O.3
Yates, J.R.4
Bassett, E.A.5
Wood, S.6
Black, B.E.7
Cleveland, D.W.8
-
7
-
-
84908218352
-
The centromere: Chromatin foundation for the kinetochore machinery
-
Fukagawa, T., and W.C. Earnshaw. 2014a. The centromere: Chromatin foundation for the kinetochore machinery. Dev. Cell. 30:496-508. http://dx.doi.org/10.1016/j.devcel.2014.08.016
-
(2014)
Dev. Cell
, vol.30
, pp. 496-508
-
-
Fukagawa, T.1
Earnshaw, W.C.2
-
8
-
-
84908155991
-
Neocentromeres
-
Fukagawa, T., and W.C. Earnshaw. 2014b. Neocentromeres. Curr. Biol. 24:R946-R947. http://dx.doi.org/10.1016/j.cub.2014.08.032
-
(2014)
Curr. Biol
, vol.24
, pp. R946-R947
-
-
Fukagawa, T.1
Earnshaw, W.C.2
-
9
-
-
17944382377
-
CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells
-
Fukagawa, T., Y. Mikami, A. Nishihashi, V. Regnier, T. Haraguchi, Y. Hiraoka, N. Sugata, K. Todokoro, W. Brown, and T. Ikemura. 2001. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J. 20:4603-4617. http://dx.doi.org/10.1093/emboj/20.16.4603
-
(2001)
EMBO J
, vol.20
, pp. 4603-4617
-
-
Fukagawa, T.1
Mikami, Y.2
Nishihashi, A.3
Regnier, V.4
Haraguchi, T.5
Hiraoka, Y.6
Sugata, N.7
Todokoro, K.8
Brown, W.9
Ikemura, T.10
-
10
-
-
84939420354
-
Stable patterns of CENH3 occupancy through maize lineages containing genetically similar centromeres
-
Gent, J.I., K. Wang, J. Jiang, and R.K. Dawe. 2015. Stable patterns of CENH3 occupancy through maize lineages containing genetically similar centromeres. Genetics. 200:1105-1116. http://dx.doi.org/10.1534/genetics.115.177360
-
(2015)
Genetics
, vol.200
, pp. 1105-1116
-
-
Gent, J.I.1
Wang, K.2
Jiang, J.3
Dawe, R.K.4
-
11
-
-
84949100071
-
Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies
-
Hayashi-Takanaka, Y., K. Maehara, A. Harada, T. Umehara, S. Yokoyama, C. Obuse, Y. Ohkawa, N. Nozaki, and H. Kimura. 2015. Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies. Chromosome Res. 23:753-766. http://dx.doi.org/10.1007/s10577-015-9486-4
-
(2015)
Chromosome Res
, vol.23
, pp. 753-766
-
-
Hayashi-Takanaka, Y.1
Maehara, K.2
Harada, A.3
Umehara, T.4
Yokoyama, S.5
Obuse, C.6
Ohkawa, Y.7
Nozaki, N.8
Kimura, H.9
-
12
-
-
0035153295
-
Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores
-
Hoffman, D.B., C.G. Pearson, T.J. Yen, B.J. Howell, and E.D. Salmon. 2001. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol. Biol. Cell. 12:1995-2009. http://dx.doi.org/10.1091/mbc.12.7.1995
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 1995-2009
-
-
Hoffman, D.B.1
Pearson, C.G.2
Yen, T.J.3
Howell, B.J.4
Salmon, E.D.5
-
13
-
-
0029761760
-
Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome
-
Hori, T., Y. Suzuki, I. Solovei, Y. Saitoh, N. Hutchison, J.E. Ikeda, H. Macgregor, and S. Mizuno. 1996. Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome. Chromosome Res. 4:411-426. http://dx.doi.org/10.1007/BF02265048
-
(1996)
Chromosome Res
, vol.4
, pp. 411-426
-
-
Hori, T.1
Suzuki, Y.2
Solovei, I.3
Saitoh, Y.4
Hutchison, N.5
Ikeda, J.E.6
McGregor, H.7
Mizuno, S.8
-
14
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
Hori, T., M. Amano, A. Suzuki, C.B. Backer, J.P. Welburn, Y. Dong, B.F. McEwen, W.H. Shang, E. Suzuki, K. Okawa, et al. 2008a. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell. 135:1039-1052. http://dx.doi.org/10.1016/j.cell.2008.10.019
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
Amano, M.2
Suzuki, A.3
Backer, C.B.4
Welburn, J.P.5
Dong, Y.6
McEwen, B.F.7
Shang, W.H.8
Suzuki, E.9
Okawa, K.10
-
15
-
-
41649109022
-
CENP-O class proteins form a stable complex and are required for proper kinetochore function
-
Hori, T., M. Okada, K. Maenaka, and T. Fukagawa. 2008b. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell. 19:843-854. http://dx.doi.org/10.1091/mbc.E07-06-0556
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 843-854
-
-
Hori, T.1
Okada, M.2
Maenaka, K.3
Fukagawa, T.4
-
16
-
-
67649884743
-
Fast and accurate short read alignment with Burrows-Wheeler transform
-
Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25:1754-1760. http://dx.doi.org/10.1093/bioinformatics/btp324
-
(2009)
Bioinformatics
, vol.25
, pp. 1754-1760
-
-
Li, H.1
Durbin, R.2
-
17
-
-
84886299445
-
The interplay between genome organization and nuclear architecture of primate evolutionary neo-centromeres
-
Lomiento, M., F. Grasser, M. Rocchi, and S. Müller. 2013. The interplay between genome organization and nuclear architecture of primate evolutionary neo-centromeres. Genomics. 102:288-295. http://dx.doi.org/10.1016/j.ygeno.2013.04.017
-
(2013)
Genomics
, vol.102
, pp. 288-295
-
-
Lomiento, M.1
Grasser, F.2
Rocchi, M.3
Müller, S.4
-
18
-
-
40749092486
-
Neocentromeres: New insights into centromere structure, disease development, and karyotype evolution
-
Marshall, O.J., A.C. Chueh, L.H. Wong, and K.H. Choo. 2008. Neocentromeres: New insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82:261-282. http://dx.doi.org/10.1016/j.ajhg.2007.11.009
-
(2008)
Am. J. Hum. Genet
, vol.82
, pp. 261-282
-
-
Marshall, O.J.1
Chueh, A.C.2
Wong, L.H.3
Choo, K.H.4
-
19
-
-
84952639708
-
The molecular basis for centromere identity and function
-
McKinley, K.L., and I.M. Cheeseman. 2016. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17:16-29. http://dx.doi.org/10.1038/nrm.2015.5
-
(2016)
Nat. Rev. Mol. Cell Biol
, vol.17
, pp. 16-29
-
-
McKinley, K.L.1
Cheeseman, I.M.2
-
20
-
-
27944495516
-
The constitutive centromere component CENP-50 is required for recovery from spindle damage
-
Minoshima, Y., T. Hori, M. Okada, H. Kimura, T. Haraguchi, Y. Hiraoka, Y.C. Bao, T. Kawashima, T. Kitamura, and T. Fukagawa. 2005. The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol. Cell. Biol. 25:10315-10328. http://dx.doi.org/10.1128/MCB.25.23.10315-10328.2005
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 10315-10328
-
-
Minoshima, Y.1
Hori, T.2
Okada, M.3
Kimura, H.4
Haraguchi, T.5
Hiraoka, Y.6
Bao, Y.C.7
Kawashima, T.8
Kitamura, T.9
Fukagawa, T.10
-
21
-
-
0036230785
-
CENP-I is essential for centromere function in vertebrate cells
-
Nishihashi, A., T. Haraguchi, Y. Hiraoka, T. Ikemura, V. Regnier, H. Dodson, W.C. Earnshaw, and T. Fukagawa. 2002. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell. 2:463-476. http://dx.doi.org/10.1016/S1534-5807(02)00144-2
-
(2002)
Dev. Cell
, vol.2
, pp. 463-476
-
-
Nishihashi, A.1
Haraguchi, T.2
Hiraoka, Y.3
Ikemura, T.4
Regnier, V.5
Dodson, H.6
Earnshaw, W.C.7
Fukagawa, T.8
-
22
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
Okada, M., I.M. Cheeseman, T. Hori, K. Okawa, I.X. McLeod, J.R. Yates III, A. Desai, and T. Fukagawa. 2006. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8:446-457. http://dx.doi.org/10.1038/ncb1396
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 446-457
-
-
Okada, M.1
Cheeseman, I.M.2
Hori, T.3
Okawa, K.4
McLeod, I.X.5
Yates, J.R.6
Desai, A.7
Fukagawa, T.8
-
23
-
-
70350234665
-
CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1
-
Okada, M., K. Okawa, T. Isobe, and T. Fukagawa. 2009. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol. Biol. Cell. 20:3986-3995. http://dx.doi.org/10.1091/mbc.E09-01-0065
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3986-3995
-
-
Okada, M.1
Okawa, K.2
Isobe, T.3
Fukagawa, T.4
-
24
-
-
80054114082
-
The ABCs of CENPs
-
Perpelescu, M., and T. Fukagawa. 2011. The ABCs of CENPs. Chromosoma. 120:425-446. http://dx.doi.org/10.1007/s00412-011-0330-0
-
(2011)
Chromosoma
, vol.120
, pp. 425-446
-
-
Perpelescu, M.1
Fukagawa, T.2
-
25
-
-
84938917047
-
HJU RP is involved in the expansion of centromeric chromatin
-
Perpelescu, M., T. Hori, A. Toyoda, S. Misu, N. Monma, K. Ikeo, C. Obuse, A. Fujiyama, and T. Fukagawa. 2015. HJU RP is involved in the expansion of centromeric chromatin. Mol. Biol. Cell. 26:2742-2754. http://dx.doi.org/10.1091/mbc.E15-02-0094
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 2742-2754
-
-
Perpelescu, M.1
Hori, T.2
Toyoda, A.3
Misu, S.4
Monma, N.5
Ikeo, K.6
Obuse, C.7
Fujiyama, A.8
Fukagawa, T.9
-
26
-
-
84929956603
-
Centromere sliding on a mammalian chromosome
-
(published erratum appears in Chromosoma. 2015. 124:289)
-
Purgato, S., E. Belloni, F.M. Piras, M. Zoli, C. Badiale, F. Cerutti, A. Mazzagatti, G. Perini, G. Della Valle, S.G. Nergadze, et al. 2015. Centromere sliding on a mammalian chromosome. Chromosoma. 124:277-287. (published erratum appears in Chromosoma. 2015. 124:289) http://dx.doi.org/10.1007/s00412-014-0493-6
-
(2015)
Chromosoma
, vol.124
, pp. 277-287
-
-
Purgato, S.1
Belloni, E.2
Piras, F.M.3
Zoli, M.4
Badiale, C.5
Cerutti, F.6
Mazzagatti, A.7
Perini, G.8
Della Valle, G.9
Nergadze, S.G.10
-
27
-
-
0141957264
-
Characterization of chicken CENP-A and comparative sequence analysis of vertebrate centromere-specific histone H3-like proteins
-
Régnier, V., J. Novelli, T. Fukagawa, P. Vagnarelli, and W. Brown. 2003. Characterization of chicken CENP-A and comparative sequence analysis of vertebrate centromere-specific histone H3-like proteins. Gene. 316:39-46. http://dx.doi.org/10.1016/S0378-1119(03)00768-6
-
(2003)
Gene
, vol.316
, pp. 39-46
-
-
Régnier, V.1
Novelli, J.2
Fukagawa, T.3
Vagnarelli, P.4
Brown, W.5
-
28
-
-
77956285927
-
Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences
-
Shang, W.H., T. Hori, A. Toyoda, J. Kato, K. Popendorf, Y. Sakakibara, A. Fujiyama, and T. Fukagawa. 2010. Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 20:1219-1228. http://dx.doi.org/10.1101/gr.106245.110
-
(2010)
Genome Res
, vol.20
, pp. 1219-1228
-
-
Shang, W.H.1
Hori, T.2
Toyoda, A.3
Kato, J.4
Popendorf, K.5
Sakakibara, Y.6
Fujiyama, A.7
Fukagawa, T.8
-
29
-
-
84875606455
-
Chromosome engineering allows the efficient isolation of vertebrate neocentromeres
-
Shang, W.H., T. Hori, N.M. Martins, A. Toyoda, S. Misu, N. Monma, I. Hiratani, K. Maeshima, K. Ikeo, A. Fujiyama, et al. 2013. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev. Cell. 24:635-648. http://dx.doi.org/10.1016/j.devcel.2013.02.009
-
(2013)
Dev. Cell
, vol.24
, pp. 635-648
-
-
Shang, W.H.1
Hori, T.2
Martins, N.M.3
Toyoda, A.4
Misu, S.5
Monma, N.6
Hiratani, I.7
Maeshima, K.8
Ikeo, K.9
Fujiyama, A.10
-
30
-
-
0027377802
-
A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: Activation of a latent centromere?
-
Voullaire, L.E., H.R. Slater, V. Petrovic, and K.H. Choo. 1993. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: Activation of a latent centromere? Am. J. Hum. Genet. 52:1153-1163.
-
(1993)
Am. J. Hum. Genet
, vol.52
, pp. 1153-1163
-
-
Voullaire, L.E.1
Slater, H.R.2
Petrovic, V.3
Choo, K.H.4
-
31
-
-
70449379045
-
Genome sequence, comparative analysis, and population genetics of the domestic horse
-
Wade, C.M., E. Giulotto, S. Sigurdsson, M. Zoli, S. Gnerre, F. Imsland, T.L. Lear, D.L. Adelson, E. Bailey, R.R. Bellone, et al. Broad Institute Whole Genome Assembly Team. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 326:865-867. http://dx.doi.org/10.1126/science.1178158
-
(2009)
Science
, vol.326
, pp. 865-867
-
-
Wade, C.M.1
Giulotto, E.2
Sigurdsson, S.3
Zoli, M.4
Gnerre, S.5
Imsland, F.6
Lear, T.L.7
Adelson, D.L.8
Bailey, E.9
Bellone, R.R.10
-
32
-
-
84879239743
-
Functions of the centromere and kinetochore in chromosome segregation
-
Westhorpe, F.G., and A.F. Straight. 2013. Functions of the centromere and kinetochore in chromosome segregation. Curr. Opin. Cell Biol. 25:334-340. http://dx.doi.org/10.1016/j.ceb.2013.02.001
-
(2013)
Curr. Opin. Cell Biol
, vol.25
, pp. 334-340
-
-
Westhorpe, F.G.1
Straight, A.F.2
-
33
-
-
84879580051
-
Plasticity and epigenetic inheritance of centromere-specific histone H3 (CENP-A)-containing nucleosome positioning in the fission yeast
-
Yao, J., X. Liu, T. Sakuno, W. Li, Y. Xi, P. Aravamudhan, A. Joglekar, W. Li, Y. Watanabe, and X. He. 2013. Plasticity and epigenetic inheritance of centromere-specific histone H3 (CENP-A)-containing nucleosome positioning in the fission yeast. J. Biol. Chem. 288:19184-19196. http://dx.doi.org/10.1074/jbc.M113.471276
-
(2013)
J. Biol. Chem
, vol.288
, pp. 19184-19196
-
-
Yao, J.1
Liu, X.2
Sakuno, T.3
Li, W.4
Xi, Y.5
Aravamudhan, P.6
Joglekar, A.7
Li, W.8
Watanabe, Y.9
He, X.10
|