메뉴 건너뛰기




Volumn 16, Issue 1, 2016, Pages

Web-based infectious disease surveillance systems and public health perspectives: A systematic review

Author keywords

Early detection; Epidemics; Outbreak; Real time; Surveillance systems; Web based

Indexed keywords

COMMUNICABLE DISEASES; COMMUNICABLE DISEASES, EMERGING; FACTUAL DATABASE; HEALTH SURVEY; HUMAN; INFECTION CONTROL; INTERNET; PROCEDURES; PUBLIC HEALTH; SEPSIS; STATISTICS AND NUMERICAL DATA;

EID: 85008684259     PISSN: None     EISSN: 14712458     Source Type: Journal    
DOI: 10.1186/s12889-016-3893-0     Document Type: Review
Times cited : (102)

References (76)
  • 1
    • 79959709098 scopus 로고    scopus 로고
    • Communicable diseases: Achievements and challenges for public health
    • Schlipköter U. Communicable diseases: achievements and challenges for public health. Public Health Rev. 2010;32(1):90.
    • (2010) Public Health Rev , vol.32 , Issue.1 , pp. 90
    • Schlipköter, U.1
  • 2
    • 0141499328 scopus 로고    scopus 로고
    • A systems overview of the electronic surveillance system for the early notification of community-based epidemics (ESSENCE II)
    • 12791777 3456555
    • Lombardo MJ, et al. A systems overview of the electronic surveillance system for the early notification of community-based epidemics (ESSENCE II). J urban health. 2003;80(1):i32-42.
    • (2003) J Urban Health , vol.80 , Issue.1 , pp. i32-i42
    • Lombardo, M.J.1
  • 3
    • 84892509071 scopus 로고    scopus 로고
    • Internet-based surveillance systems for monitoring emerging infectious diseases
    • 24290841
    • Milinovich GJ, et al. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis. 2014;14(2):160-8.
    • (2014) Lancet Infect Dis , vol.14 , Issue.2 , pp. 160-168
    • Milinovich, G.J.1
  • 4
    • 84870540472 scopus 로고    scopus 로고
    • New technologies for reporting real-time emergent infections
    • 22894823 3760201
    • Chunara R, Freifeld CC, Brownstein JS. New technologies for reporting real-time emergent infections. Parasitology. 2012;139(14):1843-51.
    • (2012) Parasitology , vol.139 , Issue.14 , pp. 1843-1851
    • Chunara, R.1    Freifeld, C.C.2    Brownstein, J.S.3
  • 5
    • 55849100040 scopus 로고    scopus 로고
    • Using internet searches for influenza surveillance
    • 18954267
    • Polgreen PM, et al. Using internet searches for influenza surveillance. Clin Infect Dis. 2008;47(11):1443-8.
    • (2008) Clin Infect Dis , vol.47 , Issue.11 , pp. 1443-1448
    • Polgreen, P.M.1
  • 6
    • 66149137223 scopus 로고    scopus 로고
    • Use of unstructured event-based reports for global infectious disease surveillance
    • 19402953 2687026
    • Keller M, et al. Use of unstructured event-based reports for global infectious disease surveillance. Emerg Infect Dis. 2009;15(5):689-95.
    • (2009) Emerg Infect Dis , vol.15 , Issue.5 , pp. 689-695
    • Keller, M.1
  • 7
    • 72849140260 scopus 로고    scopus 로고
    • Google trends: A web-based tool for real-time surveillance of disease outbreaks
    • 19845471
    • Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis. 2009;49(10):1557-64.
    • (2009) Clin Infect Dis , vol.49 , Issue.10 , pp. 1557-1564
    • Carneiro, H.A.1    Mylonakis, E.2
  • 8
    • 84866936419 scopus 로고    scopus 로고
    • The role of public health informatics in enhancing public health surveillance
    • Savel TG, Foldy S. The role of public health informatics in enhancing public health surveillance. MMWR Surveill Summ. 2012;61(Suppl):20-4.
    • (2012) MMWR Surveill Summ , vol.61 , pp. 20-24
    • Savel, T.G.1    Foldy, S.2
  • 9
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • 1:CAS:528:DC%2BD1MXht1ehurk%3D 19020500
    • Ginsberg J, et al. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012-4.
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1
  • 10
    • 85008624251 scopus 로고    scopus 로고
    • Syndromic surveillance: A necessary public health tool
    • Lateef F. Syndromic surveillance: a necessary public health tool. J Acute Dis. 2012;1(2):90-3.
    • (2012) J Acute Dis , vol.1 , Issue.2 , pp. 90-93
    • Lateef, F.1
  • 12
    • 84859168174 scopus 로고    scopus 로고
    • Public health surveillance and infectious disease detection
    • 22455675
    • Morse SS. Public health surveillance and infectious disease detection. Biosecur Bioterror. 2012;10(1):6-16.
    • (2012) Biosecur Bioterror , vol.10 , Issue.1 , pp. 6-16
    • Morse, S.S.1
  • 13
    • 57249114504 scopus 로고    scopus 로고
    • BioCaster: Detecting public health rumors with a Web-based text mining system
    • 1:CAS:528:DC%2BD1cXhsVOgsbbF 18922806 2639299
    • Collier N, et al. BioCaster: detecting public health rumors with a Web-based text mining system. Bioinformatics. 2008;24(24):2940-1.
    • (2008) Bioinformatics , vol.24 , Issue.24 , pp. 2940-2941
    • Collier, N.1
  • 14
    • 34748881802 scopus 로고    scopus 로고
    • The Indiana public health emergency surveillance system: Ongoing progress, early findings, and future directions
    • American Medical Informatics Association Washington
    • Grannis S, et al. The Indiana public health emergency surveillance system: Ongoing progress, early findings, and future directions. In: AMIA Annual Symposium proceedings. American Medical Informatics Association Washington; 2006.
    • (2006) AMIA Annual Symposium Proceedings
    • Grannis, S.1
  • 15
    • 34748880596 scopus 로고    scopus 로고
    • Infodemiology: Tracking flu-related searches on the web for syndromic surveillance
    • American Medical Informatics Association Washington
    • Eysenbach G. Infodemiology: tracking flu-related searches on the web for syndromic surveillance. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association Washington; 2006.
    • (2006) AMIA Annual Symposium Proceedings
    • Eysenbach, G.1
  • 16
    • 67651237086 scopus 로고    scopus 로고
    • Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet
    • 19329408 2762766
    • Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res. 2009;11(1):e11.
    • (2009) J Med Internet Res , vol.11 , Issue.1 , pp. e11
    • Eysenbach, G.1
  • 17
    • 79955398902 scopus 로고    scopus 로고
    • Infodemiology and infoveillance: Tracking online health information and cyberbehavior for public health
    • 21521589
    • Eysenbach G. Infodemiology and infoveillance: tracking online health information and cyberbehavior for public health. Am J Prev Med. 2011;40(5):S154-8.
    • (2011) Am J Prev Med , vol.40 , Issue.5 , pp. S154-S158
    • Eysenbach, G.1
  • 18
    • 66149157263 scopus 로고    scopus 로고
    • Digital disease detection-harnessing the Web for public health surveillance
    • 1:CAS:528:DC%2BD1MXmsVOqu7Y%3D 19423867 2917042
    • Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection-harnessing the Web for public health surveillance. N Engl J Med. 2009;360(21):2153-7.
    • (2009) N Engl J Med , vol.360 , Issue.21 , pp. 2153-2157
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 19
    • 84907849373 scopus 로고    scopus 로고
    • Using real-time syndromic surveillance to assess the health impact of the 2013 heatwave in England
    • 1:CAS:528:DC%2BC2cXhsFagtrfE 25262071
    • Elliot AJ, et al. Using real-time syndromic surveillance to assess the health impact of the 2013 heatwave in England. Environ Res. 2014;135:31-6.
    • (2014) Environ Res , vol.135 , pp. 31-36
    • Elliot, A.J.1
  • 20
    • 84856421349 scopus 로고    scopus 로고
    • Establishing a web-based integrated surveillance system for early detection of infectious disease epidemic in rural China: A field experimental study
    • 1:CAS:528:DC%2BC3sXjtFeis7k%3D
    • Yan W, et al. Establishing a web-based integrated surveillance system for early detection of infectious disease epidemic in rural china: a field experimental study. BMC Med Inform Decis Mak. 2012;12(1):1.
    • (2012) BMC Med Inform Decis Mak , vol.12 , Issue.1 , pp. 1
    • Yan, W.1
  • 21
    • 26444458314 scopus 로고    scopus 로고
    • The internet and the global monitoring of emerging diseases: Lessons from the first 10 years of ProMED-mail
    • 16216654
    • Madoff LC, Woodall JP. The internet and the global monitoring of emerging diseases: lessons from the first 10 years of ProMED-mail. Arch Med Res. 2005;36(6):724-30.
    • (2005) Arch Med Res , vol.36 , Issue.6 , pp. 724-730
    • Madoff, L.C.1    Woodall, J.P.2
  • 22
    • 33244486494 scopus 로고    scopus 로고
    • The Global Public Health Intelligence Network and early warning outbreak detection: A Canadian contribution to global public health
    • Mykhalovskiy E, Weir L. The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can J Public Health. 2006;97(1):42-44.
    • (2006) Can J Public Health. , vol.97 , Issue.1 , pp. 42-44
    • Mykhalovskiy, E.1    Weir, L.2
  • 23
    • 55849086729 scopus 로고    scopus 로고
    • Analysis of Web access logs for surveillance of influenza
    • 15361003
    • Johnson HA, et al. Analysis of Web access logs for surveillance of influenza. Stud Health Technol Inform. 2004;107(Pt 2):1202-6.
    • (2004) Stud Health Technol Inform , vol.107 , pp. 1202-1206
    • Johnson, H.A.1
  • 24
    • 79954596987 scopus 로고    scopus 로고
    • GET WELL: An automated surveillance system for gaining new epidemiological knowledge
    • Hulth A, Rydevik G. GET WELL: an automated surveillance system for gaining new epidemiological knowledge. BMC Public Health. 2011;11(1):1.
    • (2011) BMC Public Health , vol.11 , Issue.1 , pp. 1
    • Hulth, A.1    Rydevik, G.2
  • 25
    • 2542501592 scopus 로고    scopus 로고
    • Systematic review: Surveillance systems for early detection of bioterrorism-related diseases
    • 15172906
    • Bravata DM, et al. Systematic review: surveillance systems for early detection of bioterrorism-related diseases. Ann Intern Med. 2004;140(11):910-22.
    • (2004) Ann Intern Med , vol.140 , Issue.11 , pp. 910-922
    • Bravata, D.M.1
  • 26
    • 84895827710 scopus 로고    scopus 로고
    • Social media and internet-based data in global systems for public health surveillance: A systematic review
    • 24597553 3955375
    • Velasco E, et al. Social media and internet-based data in global systems for public health surveillance: a systematic review. Milbank Q. 2014;92(1):7-33.
    • (2014) Milbank Q , vol.92 , Issue.1 , pp. 7-33
    • Velasco, E.1
  • 27
    • 84954498024 scopus 로고    scopus 로고
    • New technologies in predicting, preventing and controlling emerging infectious diseases
    • 1:CAS:528:DC%2BC28XhtlKku78%3D 26068569 4720248
    • Christaki E. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence. 2015;6(6):558-65.
    • (2015) Virulence , vol.6 , Issue.6 , pp. 558-565
    • Christaki, E.1
  • 28
    • 70350765150 scopus 로고    scopus 로고
    • A profile of the online dissemination of national influenza surveillance data
    • Cheng CK, et al. A profile of the online dissemination of national influenza surveillance data. BMC Public Health. 2009;9(1):1.
    • (2009) BMC Public Health , vol.9 , Issue.1 , pp. 1
    • Cheng, C.K.1
  • 29
    • 79952200661 scopus 로고    scopus 로고
    • Using Web and social media for influenza surveillance
    • Springer: New York
    • Corley CD, et al. Using Web and social media for influenza surveillance, in Advances in Computational Biology. Springer: New York; 2010. p. 559-564.
    • (2010) Advances in Computational Biology , pp. 559-564
    • Corley, C.D.1
  • 30
    • 79952474392 scopus 로고    scopus 로고
    • Prediction and surveillance of influenza epidemics
    • 21401485
    • Boyle JR, et al. Prediction and surveillance of influenza epidemics. Med J Aust. 2011;194(4):S28.
    • (2011) Med J Aust , vol.194 , Issue.4 , pp. S28
    • Boyle, J.R.1
  • 31
    • 77953601869 scopus 로고    scopus 로고
    • The next public health revolution: Public health information fusion and social networks
    • 20530760 2882406
    • Khan AS, et al. The next public health revolution: public health information fusion and social networks. Am J Public Health. 2010;100(7):1237-42.
    • (2010) Am J Public Health , vol.100 , Issue.7 , pp. 1237-1242
    • Khan, A.S.1
  • 32
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • 1:CAS:528:DC%2BC3sXnvVSltw%3D%3D 23184969 3528592
    • Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci. 2012;109(50):20425-30.
    • (2012) Proc Natl Acad Sci , vol.109 , Issue.50 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 33
    • 84859595381 scopus 로고    scopus 로고
    • Comparison of Web-based biosecurity intelligence systems: BioCaster, EpiSPIDER and HealthMap
    • 1:STN:280:DC%2BC38zptVyhsQ%3D%3D 22182229
    • Lyon A, et al. Comparison of Web-based biosecurity intelligence systems: BioCaster, EpiSPIDER and HealthMap. Transbound Emerg Dis. 2012;59(3):223-32.
    • (2012) Transbound Emerg Dis , vol.59 , Issue.3 , pp. 223-232
    • Lyon, A.1
  • 34
    • 84873463473 scopus 로고    scopus 로고
    • Latest outbreak news from ProMED-mail
    • 23270612
    • Pollack MP, et al. Latest outbreak news from ProMED-mail. Int J Infect Dis. 2013;17(2):e143-4.
    • (2013) Int J Infect Dis , vol.17 , Issue.2 , pp. e143-e144
    • Pollack, M.P.1
  • 36
    • 79956360352 scopus 로고    scopus 로고
    • Web query-based surveillance in Sweden during the influenza A (H1N1) 2009 pandemic, April 2009 to February 2010
    • Hulth A, Rydevik G. Web query-based surveillance in Sweden during the influenza A (H1N1) 2009 pandemic, April 2009 to February 2010. Euro Surveill. 2011;16(18).
    • (2011) Euro Surveill. , vol.16 , Issue.18
    • Hulth, A.1    Rydevik, G.2
  • 37
    • 3242790765 scopus 로고    scopus 로고
    • ProMED-mail: An early warning system for emerging diseases
    • Victor LY, Madoff LC. ProMED-mail: an early warning system for emerging diseases. Clin Infect Dis. 2004;39(2):227-32.
    • (2004) Clin Infect Dis , vol.39 , Issue.2 , pp. 227-232
    • Victor, L.Y.1    Madoff, L.C.2
  • 38
    • 84999051671 scopus 로고    scopus 로고
    • Big data and the global public health intelligence network (GPHIN)
    • Dion M, AbdelMalik P, Mawudeku A. Big data and the global public health intelligence network (GPHIN). Can Commun Dis Rep. 2015;41(9):209.
    • (2015) Can Commun Dis Rep , vol.41 , Issue.9 , pp. 209
    • Dion, M.1    AbdelMalik, P.2    Mawudeku, A.3
  • 40
    • 84897399463 scopus 로고    scopus 로고
    • Determinants of follow-up participation in the internet-based European influenza surveillance platform influenzanet
    • 24613818 3967126
    • Bajardi P, et al. Determinants of follow-up participation in the internet-based European influenza surveillance platform influenzanet. J Med Internet Res. 2014;16(3):e78.
    • (2014) J Med Internet Res , vol.16 , Issue.3 , pp. e78
    • Bajardi, P.1
  • 41
    • 85008605210 scopus 로고    scopus 로고
    • Big data is changing the battle against infectious diseases
    • Links M. Big data is changing the battle against infectious diseases. Can Commun Dis Rep. 2015;41(9):215.
    • (2015) Can Commun Dis Rep , vol.41 , Issue.9 , pp. 215
    • Links, M.1
  • 43
    • 77449118101 scopus 로고    scopus 로고
    • Combining information retrieval and information extraction for medical intelligence
    • NATO Advanced Study Institute
    • Yangarber R, et al. Combining information retrieval and information extraction for medical intelligence. Proceeding of Mining Massive Data Sets for Security, NATO Advanced Study Institute; 2007.
    • (2007) Proceeding of Mining Massive Data Sets for Security
    • Yangarber, R.1
  • 45
    • 33749049349 scopus 로고    scopus 로고
    • Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing
    • 16540129
    • Stroud PD, et al. Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing. Math Biosci. 2006;203(2):301-18.
    • (2006) Math Biosci , vol.203 , Issue.2 , pp. 301-318
    • Stroud, P.D.1
  • 46
    • 30544452614 scopus 로고    scopus 로고
    • Understanding large scale social and infrastructure networks: A simulation based approach
    • Barrett C, et al. Understanding large scale social and infrastructure networks: a simulation based approach. SIAM News. 2004;37(4):1-5.
    • (2004) SIAM News , vol.37 , Issue.4 , pp. 1-5
    • Barrett, C.1
  • 47
    • 1842431492 scopus 로고    scopus 로고
    • Structural and algorithmic aspects of massive social networks
    • Society for Industrial and Applied Mathematics Philadelphia
    • Eubank S, et al. Structural and algorithmic aspects of massive social networks. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia; 2004.
    • (2004) Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
    • Eubank, S.1
  • 48
    • 2442686815 scopus 로고    scopus 로고
    • Modelling disease outbreaks in realistic urban social networks
    • 1:CAS:528:DC%2BD2cXjvVKgsbo%3D 15141212
    • Eubank S, et al. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429(6988):180-4.
    • (2004) Nature , vol.429 , Issue.6988 , pp. 180-184
    • Eubank, S.1
  • 49
    • 84874620034 scopus 로고    scopus 로고
    • Evaluation of epidemic intelligence systems integrated in the early alerting and reporting project for the detection of A/H5N1 influenza events
    • 1:CAS:528:DC%2BC3sXktlSktLY%3D 23472077 3589479
    • Barboza P, et al. Evaluation of epidemic intelligence systems integrated in the early alerting and reporting project for the detection of A/H5N1 influenza events. PLoS One. 2013;8(3):e57252.
    • (2013) PLoS One , vol.8 , Issue.3 , pp. e57252
    • Barboza, P.1
  • 50
    • 48749128253 scopus 로고    scopus 로고
    • Scanning the emerging infectious diseases horizon-visualizing ProMED emails using EpiSPIDER
    • Herman Tolentino M, et al. Scanning the emerging infectious diseases horizon-visualizing ProMED emails using EpiSPIDER. Adv Dis Surveil. 2007;2:169.
    • (2007) Adv Dis Surveil , vol.2 , pp. 169
    • Herman Tolentino, M.1
  • 52
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: Global infectious disease monitoring through automated classification and visualization of Internet media reports
    • 18096908 2274789
    • Freifeld CC, et al. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J Am Med Inform Assoc. 2008;15(2):150-7.
    • (2008) J Am Med Inform Assoc , vol.15 , Issue.2 , pp. 150-157
    • Freifeld, C.C.1
  • 54
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google flu trends performance in the United States during the 2009 influenza virus a (H1N1) pandemic
    • 1:CAS:528:DC%2BC3MXhtFyrsL%2FO 21886802 3158788
    • Cook S, et al. Assessing Google flu trends performance in the united states during the 2009 influenza virus a (H1N1) pandemic. PLoS One. 2011;6(8):e23610.
    • (2011) PLoS One , vol.6 , Issue.8 , pp. e23610
    • Cook, S.1
  • 55
    • 84862835806 scopus 로고    scopus 로고
    • Predicting the present with Google trends
    • Choi H, Varian H. Predicting the present with Google trends. Economic Record. 2012;88(s1):2-9.
    • (2012) Economic Record , vol.88 , Issue.S1 , pp. 2-9
    • Choi, H.1    Varian, H.2
  • 56
    • 79955690250 scopus 로고    scopus 로고
    • Monitoring influenza activity in the United States: A comparison of traditional surveillance systems with Google Flu trends
    • 1:CAS:528:DC%2BC3MXls1SmsLY%3D 21556151 3083406
    • Ortiz JR, et al. Monitoring influenza activity in the united states: a comparison of traditional surveillance systems with Google Flu trends. PLoS One. 2011;6(4):e18687.
    • (2011) PLoS One , vol.6 , Issue.4 , pp. e18687
    • Ortiz, J.R.1
  • 57
    • 84874002846 scopus 로고    scopus 로고
    • Influenza forecasting with Google flu trends
    • 1:CAS:528:DC%2BC3sXjtl2qtLg%3D 23457520 3572967
    • Dugas AF, et al. Influenza forecasting with Google flu trends. PLoS One. 2013;8(2):e56176.
    • (2013) PLoS One , vol.8 , Issue.2 , pp. e56176
    • Dugas, A.F.1
  • 58
    • 84924066661 scopus 로고    scopus 로고
    • Meeting the international health regulations (2005) surveillance core capacity requirements at the subnational level in Europe: The added value of syndromic surveillance
    • Ziemann A, et al. Meeting the international health regulations (2005) surveillance core capacity requirements at the subnational level in Europe: the added value of syndromic surveillance. BMC Public Health. 2015;15(1):1.
    • (2015) BMC Public Health , vol.15 , Issue.1 , pp. 1
    • Ziemann, A.1
  • 59
    • 85008618631 scopus 로고    scopus 로고
    • Social media trends for health librarians: A primer on using social media for clinical disease surveillance
    • Giustini D. Social media trends for health librarians: a primer on using social media for clinical disease surveillance. J Can Health Lib Assoc. 2014;33(2):92-4.
    • (2014) J Can Health Lib Assoc , vol.33 , Issue.2 , pp. 92-94
    • Giustini, D.1
  • 60
    • 84900339672 scopus 로고    scopus 로고
    • Analysing twitter and web queries for flu trend prediction
    • Santos JC, Matos S. Analysing twitter and web queries for flu trend prediction. Theor Biol Med Model. 2014;11(1):1.
    • (2014) Theor Biol Med Model , vol.11 , Issue.1 , pp. 1
    • Santos, J.C.1    Matos, S.2
  • 61
    • 84890683224 scopus 로고    scopus 로고
    • Web-based participatory surveillance of infectious diseases: The influenzanet participatory surveillance experience
    • 1:STN:280:DC%2BC2c3os1OhtA%3D%3D 24350723
    • Paolotti D, et al. Web-based participatory surveillance of infectious diseases: the influenzanet participatory surveillance experience. Clin Microbiol Infect. 2014;20(1):17-21.
    • (2014) Clin Microbiol Infect , vol.20 , Issue.1 , pp. 17-21
    • Paolotti, D.1
  • 62
    • 84968807215 scopus 로고    scopus 로고
    • Traditional and syndromic surveillance of infectious diseases and pathogens
    • 27143522
    • Abat C, et al. Traditional and syndromic surveillance of infectious diseases and pathogens. Int J Infect Dis. 2016;48:22-8.
    • (2016) Int J Infect Dis , vol.48 , pp. 22-28
    • Abat, C.1
  • 63
    • 84866896931 scopus 로고    scopus 로고
    • Public health surveillance in the United States: Evolution and challenges
    • Thacker SB, et al. Public health surveillance in the united states: evolution and challenges. MMWR Surveill Summ. 2012;61(Suppl):3-9.
    • (2012) MMWR Surveill Summ , vol.61 , pp. 3-9
    • Thacker, S.B.1
  • 64
    • 13844254417 scopus 로고    scopus 로고
    • BioSense - A national initiative for early detection and quantification of public health emergencies
    • Loonsk JW. BioSense - a national initiative for early detection and quantification of public health emergencies. Morbidity and Mortality Weekly Report Atlanta; 2004: p. 53-55.
    • (2004) Morbidity and Mortality Weekly Report Atlanta , pp. 53-55
    • Loonsk, J.W.1
  • 65
    • 34347232000 scopus 로고    scopus 로고
    • An epidemiological network model for disease outbreak detection
    • 17593895 1896205
    • Reis BY, Kohane IS, Mandl KD. An epidemiological network model for disease outbreak detection. PLoS Med. 2007;4(6):e210.
    • (2007) PLoS Med , vol.4 , Issue.6 , pp. e210
    • Reis, B.Y.1    Kohane, I.S.2    Mandl, K.D.3
  • 66
    • 77949462651 scopus 로고    scopus 로고
    • A public health role for internet search engine query data?
    • 19743728
    • Pattie DC, et al. A public health role for internet search engine query data? Mil Med. 2009;174(8):xi-xii.
    • (2009) Mil Med , vol.174 , Issue.8 , pp. xi-xii
    • Pattie, D.C.1
  • 68
    • 84859446833 scopus 로고    scopus 로고
    • Integration of syndromic surveillance data into public health practice at state and local levels in North Carolina
    • Samoff E, et al. Integration of syndromic surveillance data into public health practice at state and local levels in North Carolina. Public Health Reports; 2012: p. 310-317.
    • (2012) Public Health Reports , pp. 310-317
    • Samoff, E.1
  • 69
    • 65349193872 scopus 로고    scopus 로고
    • Early detection of disease outbreaks using the internet
    • Wilson K, Brownstein JS. Early detection of disease outbreaks using the internet. Can Med Assoc J. 2009;180(8):829-31.
    • (2009) Can Med Assoc J , vol.180 , Issue.8 , pp. 829-831
    • Wilson, K.1    Brownstein, J.S.2
  • 70
    • 84927632777 scopus 로고    scopus 로고
    • Big data: A big mistake?
    • Harford T. Big data: a big mistake? Significance. 2014;11(5):14-9.
    • (2014) Significance , vol.11 , Issue.5 , pp. 14-19
    • Harford, T.1
  • 71
    • 84955490579 scopus 로고    scopus 로고
    • Ten-year performance of influenzanet: ILI time series, risks, vaccine effects, and care-seeking behaviour
    • 26616039
    • van Noort SP, et al. Ten-year performance of influenzanet: ILI time series, risks, vaccine effects, and care-seeking behaviour. Epidemics. 2015;13:28-36.
    • (2015) Epidemics , vol.13 , pp. 28-36
    • Van Noort, S.P.1
  • 72
    • 84872591090 scopus 로고    scopus 로고
    • Monitoring epidemic alert levels by analyzing internet search volume
    • 23192470
    • Zhou X, et al. Monitoring epidemic alert levels by analyzing internet search volume. IEEE Trans Biomed Eng. 2013;60(2):446-52.
    • (2013) IEEE Trans Biomed Eng , vol.60 , Issue.2 , pp. 446-452
    • Zhou, X.1
  • 73
    • 79957985746 scopus 로고    scopus 로고
    • Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance
    • 21647308 3104029
    • Chan EH, et al. Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis. 2011;5(5):e1206.
    • (2011) PLoS Negl Trop Dis , vol.5 , Issue.5 , pp. e1206
    • Chan, E.H.1
  • 74
    • 77950993217 scopus 로고    scopus 로고
    • Rural-urban differences in general and health-related internet use
    • Hale TM, et al. Rural-urban differences in general and health-related internet use. American Behavioral Scientist Thousand Oaks; 2010.
    • (2010) American Behavioral Scientist Thousand Oaks
    • Hale, T.M.1
  • 75
    • 84866935742 scopus 로고    scopus 로고
    • Public health surveillance data: Legal, policy, ethical, regulatory, and practical issues
    • Bernstein AB, et al. Public health surveillance data: legal, policy, ethical, regulatory, and practical issues. MMWR Surveill Summ. 2012;61:30-4.
    • (2012) MMWR Surveill Summ , vol.61 , pp. 30-34
    • Bernstein, A.B.1
  • 76
    • 84871967854 scopus 로고    scopus 로고
    • Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States
    • 21676450
    • Willard SD, Nguyen MM. Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States. Urology. 2013;81(1):37-42.
    • (2013) Urology , vol.81 , Issue.1 , pp. 37-42
    • Willard, S.D.1    Nguyen, M.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.