-
1
-
-
77956963862
-
Graphene and graphene oxide: synthesis, Properties, and applications
-
[1] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., Graphene and graphene oxide: synthesis, Properties, and applications. Adv. Mater. 22 (2010), 3906–3924.
-
(2010)
Adv. Mater.
, vol.22
, pp. 3906-3924
-
-
Zhu, Y.1
Murali, S.2
Cai, W.3
Li, X.4
Suk, J.W.5
Potts, J.R.6
Ruoff, R.S.7
-
2
-
-
79951895444
-
Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications
-
[2] Guo, S., Dong, S., Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40 (2011), 2644–2672.
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 2644-2672
-
-
Guo, S.1
Dong, S.2
-
3
-
-
75649121098
-
Honeycomb carbon: a review of graphene
-
[3] Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene. Chem. Rev. 110 (2010), 132–145.
-
(2010)
Chem. Rev.
, vol.110
, pp. 132-145
-
-
Allen, M.J.1
Tung, V.C.2
Kaner, R.B.3
-
4
-
-
79958800834
-
High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte
-
[4] Wang, J., Manga, K.K., Bao, Q., Loh, K.P., High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J. Am. Chem. Soc. 133 (2011), 8888–8891.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 8888-8891
-
-
Wang, J.1
Manga, K.K.2
Bao, Q.3
Loh, K.P.4
-
5
-
-
45449092408
-
One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite
-
[5] Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J., One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18 (2008), 1518–1525.
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 1518-1525
-
-
Liu, N.1
Luo, F.2
Wu, H.3
Liu, Y.4
Zhang, C.5
Chen, J.6
-
6
-
-
79952911747
-
High-quality thin graphene films from fast electrochemical exfoliation
-
[6] Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A.N., Li, L.-J., High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5 (2011), 2332–2339.
-
(2011)
ACS Nano
, vol.5
, pp. 2332-2339
-
-
Su, C.-Y.1
Lu, A.-Y.2
Xu, Y.3
Chen, F.-R.4
Khlobystov, A.N.5
Li, L.-J.6
-
7
-
-
84899581841
-
Exfoliation of graphite into graphene in aqueous solutions of inorganic salts
-
[7] Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., Müllen, K., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136 (2014), 6083–6091.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 6083-6091
-
-
Parvez, K.1
Wu, Z.-S.2
Li, R.3
Liu, X.4
Graf, R.5
Feng, X.6
Müllen, K.7
-
8
-
-
84902173738
-
Graphene quantum dots cut from graphene flakes: high electrocatalytic activity for oxygen reduction and low cytotoxicity
-
[8] Yan, R., Wu, H., Zheng, Q., Wang, J., Huang, J., Ding, K., Guo, Q., Wang, J., Graphene quantum dots cut from graphene flakes: high electrocatalytic activity for oxygen reduction and low cytotoxicity. RSC Adv. 4 (2014), 23097–23106.
-
(2014)
RSC Adv.
, vol.4
, pp. 23097-23106
-
-
Yan, R.1
Wu, H.2
Zheng, Q.3
Wang, J.4
Huang, J.5
Ding, K.6
Guo, Q.7
Wang, J.8
-
9
-
-
84930192732
-
Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage
-
[9] Wang, J., Huang, J., Yan, R., Wang, F., Cheng, W., Guo, Q., Wang, J., Graphene microsheets from natural microcrystalline graphite minerals: scalable synthesis and unusual energy storage. J. Mater. Chem. A 3 (2015), 3144–3150.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 3144-3150
-
-
Wang, J.1
Huang, J.2
Yan, R.3
Wang, F.4
Cheng, W.5
Guo, Q.6
Wang, J.7
-
10
-
-
84868152449
-
Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization
-
[10] Zhong, Y.L., Swager, T.M., Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J. Am. Chem. Soc. 134 (2012), 17896–17899.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 17896-17899
-
-
Zhong, Y.L.1
Swager, T.M.2
-
12
-
-
84055182850
-
4 hybrid composite and its application in the removal of dyes from aqueous solution
-
4 hybrid composite and its application in the removal of dyes from aqueous solution. J. Mater. Chem. 22 (2012), 1033–1039.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 1033-1039
-
-
Xie, G.1
Xi, P.2
Liu, H.3
Chen, F.4
Huang, L.5
Shi, Y.6
Hou, F.7
Zeng, Z.8
Shao, C.9
Wang, J.10
-
13
-
-
84880268635
-
4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors
-
4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 245 (2014), 101–106.
-
(2014)
J. Power Sources
, vol.245
, pp. 101-106
-
-
Wang, Q.1
Jiao, L.2
Du, H.3
Wang, Y.4
Yuan, H.5
-
14
-
-
84885467375
-
4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability
-
4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Nanoscale 5 (2013), 6797–6803.
-
(2013)
Nanoscale
, vol.5
, pp. 6797-6803
-
-
Chen, Y.1
Song, B.2
Lu, L.3
Xue, J.4
-
16
-
-
84155165385
-
4 multifunctional freestanding membranes and their temperature dependent electronic transport properties
-
4 multifunctional freestanding membranes and their temperature dependent electronic transport properties. Carbon 50 (2012), 1338–1345.
-
(2012)
Carbon
, vol.50
, pp. 1338-1345
-
-
Narayanan, T.N.1
Liu, Z.2
Lakshmy, P.R.3
Gao, W.4
Nagaoka, Y.5
Sakthi Kumar, D.6
Lou, J.7
Vajtai, R.8
Ajayan, P.M.9
-
17
-
-
24344474914
-
4 nanostructures
-
4 nanostructures. Appl. Phys. Lett., 86, 2005, 252507.
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 252507
-
-
Li, H.1
Wu, Y.2
Guo, Z.3
Wang, S.4
Teo, K.L.5
Veres, T.6
-
18
-
-
79953730786
-
4 magnetic nanoparticles on graphene oxide
-
4 magnetic nanoparticles on graphene oxide. Nanoscale 3 (2011), 1446–1450.
-
(2011)
Nanoscale
, vol.3
, pp. 1446-1450
-
-
Zhang, Y.1
Chen, B.2
Zhang, L.3
Huang, J.4
Chen, F.5
Yang, Z.6
Yao, J.7
Zhang, Z.8
-
19
-
-
79956109062
-
Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide
-
[19] Fan, Z.J., Kai, W., Yan, J., Wei, T., Zhi, L.J., Feng, J., Ren, Y.M., Song, L.P., Wei, F., Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5:1 (2011), 191–198.
-
(2011)
ACS Nano
, vol.5
, Issue.1
, pp. 191-198
-
-
Fan, Z.J.1
Kai, W.2
Yan, J.3
Wei, T.4
Zhi, L.J.5
Feng, J.6
Ren, Y.M.7
Song, L.P.8
Wei, F.9
-
20
-
-
78751631773
-
Graphene-based multifunctional iron oxide nanosheets with tunable properties
-
[20] Koo, H.Y., Lee, H.-J., Go, H.-A., Lee, Y.B., Bae, T.S., Kim, J.K., Choi, W.S., Graphene-based multifunctional iron oxide nanosheets with tunable properties. Chem. A Eur. J. 17:4 (2011), 1214–1219.
-
(2011)
Chem. A Eur. J.
, vol.17
, Issue.4
, pp. 1214-1219
-
-
Koo, H.Y.1
Lee, H.-J.2
Go, H.-A.3
Lee, Y.B.4
Bae, T.S.5
Kim, J.K.6
Choi, W.S.7
-
21
-
-
84862833251
-
Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging
-
[21] Chen, W., Yi, P., Zhang, Y., Zhang, L., Deng, Z., Zhang, Z., Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces 3:10 (2011), 4085–4091.
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, Issue.10
, pp. 4085-4091
-
-
Chen, W.1
Yi, P.2
Zhang, Y.3
Zhang, L.4
Deng, Z.5
Zhang, Z.6
-
22
-
-
83455200154
-
Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel
-
[22] Chen, W., Li, S., Chen, C., Yan, L., Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23 (2011), 5679–5683.
-
(2011)
Adv. Mater.
, vol.23
, pp. 5679-5683
-
-
Chen, W.1
Li, S.2
Chen, C.3
Yan, L.4
-
23
-
-
84893192926
-
4 nanoparticles with tunable covering densities
-
4 nanoparticles with tunable covering densities. J. Mater. Chem. A 2 (2014), 2690–2700.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 2690-2700
-
-
Baaziz, W.1
Truong-Phuoc, L.2
Duong-Viet, C.3
Melinte, G.4
Janowska, I.5
Papaefthimiou, V.6
Ersen, O.7
Zafeiratos, S.8
Begin, D.9
Begin-Colin, S.10
Pham-Huu, C.11
-
24
-
-
77955520123
-
Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal
-
[24] Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.-C., Kim, K.S., Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4 (2010), 3979–3986.
-
(2010)
ACS Nano
, vol.4
, pp. 3979-3986
-
-
Chandra, V.1
Park, J.2
Chun, Y.3
Lee, J.W.4
Hwang, I.-C.5
Kim, K.S.6
-
25
-
-
84928963445
-
Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field
-
[25] Xu, X., Li, H., Zhang, Q., Hu, H., Zhao, Z., Li, J., Li, J., Qiao, Y., Gogotsi, Y., Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 9 (2015), 3969–3977.
-
(2015)
ACS Nano
, vol.9
, pp. 3969-3977
-
-
Xu, X.1
Li, H.2
Zhang, Q.3
Hu, H.4
Zhao, Z.5
Li, J.6
Li, J.7
Qiao, Y.8
Gogotsi, Y.9
-
26
-
-
67049114637
-
Chemical methods for the production of graphenes
-
[26] Park, S., Ruoff, R.S., Chemical methods for the production of graphenes. Nat. Nano 4 (2009), 217–224.
-
(2009)
Nat. Nano
, vol.4
, pp. 217-224
-
-
Park, S.1
Ruoff, R.S.2
-
27
-
-
38949108623
-
Processable aqueous dispersions of graphene nanosheets
-
[27] Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Processable aqueous dispersions of graphene nanosheets. Nat. Nano 3 (2008), 101–105.
-
(2008)
Nat. Nano
, vol.3
, pp. 101-105
-
-
Li, D.1
Muller, M.B.2
Gilje, S.3
Kaner, R.B.4
Wallace, G.G.5
-
28
-
-
84871597303
-
Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets
-
[28] Lin, X., Shen, X., Zheng, Q., Yousefi, N., Ye, L., Mai, Y.-W., Kim, J.-K., Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6 (2012), 10708–10719.
-
(2012)
ACS Nano
, vol.6
, pp. 10708-10719
-
-
Lin, X.1
Shen, X.2
Zheng, Q.3
Yousefi, N.4
Ye, L.5
Mai, Y.-W.6
Kim, J.-K.7
-
29
-
-
77957119241
-
Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids
-
[29] Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.-M., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48 (2010), 4466–4474.
-
(2010)
Carbon
, vol.48
, pp. 4466-4474
-
-
Pei, S.1
Zhao, J.2
Du, J.3
Ren, W.4
Cheng, H.-M.5
-
30
-
-
84897498304
-
Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite
-
[30] Wu, L., Li, W., Li, P., Liao, S., Qiu, S., Chen, M., Guo, Y., Li, Q., Zhu, C., Liu, C., Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite. Small 10:7 (2014), 1421–1429.
-
(2014)
Small
, vol.10
, Issue.7
, pp. 1421-1429
-
-
Wu, L.1
Li, W.2
Li, P.3
Liao, S.4
Qiu, S.5
Chen, M.6
Guo, Y.7
Li, Q.8
Zhu, C.9
Liu, C.10
-
31
-
-
84876583278
-
Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics
-
[31] Parvez, K., Li, R., Puniredd, S.R., Hernandez, Y., Hinkel, F., Wang, S., Feng, X., Mullen, K., Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7:4 (2013), 3598–3606.
-
(2013)
ACS Nano
, vol.7
, Issue.4
, pp. 3598-3606
-
-
Parvez, K.1
Li, R.2
Puniredd, S.R.3
Hernandez, Y.4
Hinkel, F.5
Wang, S.6
Feng, X.7
Mullen, K.8
-
32
-
-
33947263695
-
Studying disorder in graphite-based systems by Raman spectroscopy
-
[32] Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cancado, L.G., Jorio, A., Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9 (2007), 1276–1290.
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 1276-1290
-
-
Pimenta, M.A.1
Dresselhaus, G.2
Dresselhaus, M.S.3
Cancado, L.G.4
Jorio, A.5
Saito, R.6
-
33
-
-
70349668809
-
Graphene: the new two-dimensional nanomaterial
-
[33] Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A., Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48 (2009), 7752–7777.
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 7752-7777
-
-
Rao, C.N.R.1
Sood, A.K.2
Subrahmanyam, K.S.3
Govindaraj, A.4
-
34
-
-
37249037005
-
Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering
-
[34] Mafra, D.L., Samsonidze, G., Malard, L.M., Elias, D.C., Brant, J.C., Plentz, F., Alves, E.S., Pimenta, M.A., Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys. Rev. B, 76, 2007, 233407.
-
(2007)
Phys. Rev. B
, vol.76
, pp. 233407
-
-
Mafra, D.L.1
Samsonidze, G.2
Malard, L.M.3
Elias, D.C.4
Brant, J.C.5
Plentz, F.6
Alves, E.S.7
Pimenta, M.A.8
-
35
-
-
64149126156
-
Raman spectroscopy in graphene
-
[35] Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Raman spectroscopy in graphene. Phys. Rep. 473 (2009), 51–87.
-
(2009)
Phys. Rep.
, vol.473
, pp. 51-87
-
-
Malard, L.M.1
Pimenta, M.A.2
Dresselhaus, G.3
Dresselhaus, M.S.4
-
36
-
-
84890404566
-
4 lithium battery anodes with long cycle life and high rate capability
-
4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13 (2013), 6136–6143.
-
(2013)
Nano Lett.
, vol.13
, pp. 6136-6143
-
-
Luo, J.1
Liu, J.2
Zeng, Z.3
Ng, C.F.4
Ma, L.5
Zhang, H.6
Lin, J.7
Shen, Z.8
Fan, H.J.9
-
37
-
-
84876518898
-
Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors
-
[37] Wu, X.-L., Wen, T., Guo, H.-L., Yang, S., Wang, X., Xu, A.-W., Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7 (2013), 3589–3597.
-
(2013)
ACS Nano
, vol.7
, pp. 3589-3597
-
-
Wu, X.-L.1
Wen, T.2
Guo, H.-L.3
Yang, S.4
Wang, X.5
Xu, A.-W.6
-
39
-
-
84881616247
-
Deformation and failure mechanisms in graphene oxide paper using in situ nanomechanical tensile testing
-
[39] Wang, C., Frogley, M.D., Cinque, G., Liu, L.-Q., Barber, A.H., Deformation and failure mechanisms in graphene oxide paper using in situ nanomechanical tensile testing. Carbon 63 (2013), 471–477.
-
(2013)
Carbon
, vol.63
, pp. 471-477
-
-
Wang, C.1
Frogley, M.D.2
Cinque, G.3
Liu, L.-Q.4
Barber, A.H.5
-
40
-
-
79960644631
-
Thermal properties of graphene and nanostructured carbon materials
-
[40] Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10 (2011), 569–581.
-
(2011)
Nat. Mater.
, vol.10
, pp. 569-581
-
-
Balandin, A.A.1
-
41
-
-
84870032455
-
Thermal properties of graphene: fundamentals and applications
-
[41] Pop, E., Varshney, V., Roy, A.K., Thermal properties of graphene: fundamentals and applications. MRS Bull. 37 (2012), 1273–1281.
-
(2012)
MRS Bull.
, vol.37
, pp. 1273-1281
-
-
Pop, E.1
Varshney, V.2
Roy, A.K.3
-
42
-
-
34447256542
-
Superparamagnetic magnetite colloidal nanocrystal clusters
-
[42] Ge, J., Hu, Y., Biasini, M., Beyermann, W.P., Yin, Y., Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46 (2007), 4342–4345.
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 4342-4345
-
-
Ge, J.1
Hu, Y.2
Biasini, M.3
Beyermann, W.P.4
Yin, Y.5
-
43
-
-
84886791755
-
One-step, in situ growth of unmodified graphene – magnetic nanostructured composites
-
[43] Pilatos, G., Vermisoglou, E.C., Perdikaki, A., Devlin, E., Pappas, G.S., Romanos, G.E., Boukos, N., Giannakopoulou, T., Trapalis, C., Kanellopoulos, N.K., Karanikolos, G.N., One-step, in situ growth of unmodified graphene – magnetic nanostructured composites. Carbon 66 (2014), 467–475.
-
(2014)
Carbon
, vol.66
, pp. 467-475
-
-
Pilatos, G.1
Vermisoglou, E.C.2
Perdikaki, A.3
Devlin, E.4
Pappas, G.S.5
Romanos, G.E.6
Boukos, N.7
Giannakopoulou, T.8
Trapalis, C.9
Kanellopoulos, N.K.10
Karanikolos, G.N.11
-
44
-
-
84916613004
-
4@reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water
-
4@reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J. Mater. Chem. A 3 (2015), 832–839.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 832-839
-
-
Ding, J.1
Li, B.2
Liu, Y.3
Yan, X.4
Zeng, S.5
Zhang, X.6
Hou, L.7
Cai, Q.8
Zhang, J.9
-
46
-
-
0034677878
-
Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices
-
[46] Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 2000, 1989.
-
(2000)
Science
, vol.287
, pp. 1989
-
-
Sun, S.1
Murray, C.B.2
Weller, D.3
Folks, L.4
Moser, A.5
-
47
-
-
31944447924
-
Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO Shell
-
[47] Kang, S., Miao, G.X., Shi, S., Jia, Z., Nikles, D.E., Harrell, J.W., Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO Shell. J. Am. Chem. Soc., 128, 2006, 1042.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 1042
-
-
Kang, S.1
Miao, G.X.2
Shi, S.3
Jia, Z.4
Nikles, D.E.5
Harrell, J.W.6
-
48
-
-
84906237069
-
4 nanoparticles
-
4 nanoparticles. J. Mater. Chem. A 2 (2014), 14940–14946.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 14940-14946
-
-
Wang, L.1
Jia, X.2
Li, Y.3
Yang, F.4
Zhang, L.5
Liu, L.6
Ren, X.7
Yang, H.8
-
49
-
-
84902151958
-
Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding
-
[49] Song, W.-L., Fan, L.-Z., Cao, M.-S., Lu, M.-M., Wang, C.-Y., Wang, J., Chen, T.-T., Li, Y., Hou, Z.-L., Liu, J., Sun, Y.-P., Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J. Mater. Chem. C 2 (2014), 5057–5064.
-
(2014)
J. Mater. Chem. C
, vol.2
, pp. 5057-5064
-
-
Song, W.-L.1
Fan, L.-Z.2
Cao, M.-S.3
Lu, M.-M.4
Wang, C.-Y.5
Wang, J.6
Chen, T.-T.7
Li, Y.8
Hou, Z.-L.9
Liu, J.10
Sun, Y.-P.11
-
51
-
-
84904730090
-
Conducting ferrofluid: a high-performance microwave shielding material
-
[51] Mishra, M., Singh, A.P., Singh, B.P., Singh, V.N., Dhawan, S.K., Conducting ferrofluid: a high-performance microwave shielding material. J. Mater. Chem. A 2 (2014), 13159–13168.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 13159-13168
-
-
Mishra, M.1
Singh, A.P.2
Singh, B.P.3
Singh, V.N.4
Dhawan, S.K.5
-
52
-
-
84874599346
-
4 incorporated polyaniline as a high performance shield against electromagnetic pollution
-
4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5 (2013), 2411–2420.
-
(2013)
Nanoscale
, vol.5
, pp. 2411-2420
-
-
Singh, K.1
Ohlan, A.2
Pham, V.H.3
Varshney, S.4
Jang, J.5
Hur, S.H.6
Choi, W.M.7
Kumar, M.8
Dhawan, S.K.9
Kong, B.-S.10
Chung, J.S.11
-
53
-
-
84904641039
-
Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding
-
[53] Shen, B., Zhai, W., Zheng, W., Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24 (2014), 4542–4548.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4542-4548
-
-
Shen, B.1
Zhai, W.2
Zheng, W.3
-
54
-
-
84940101206
-
Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness
-
[54] Kumar, P., Shahzad, F., Yu, S., Hong, S.M., Kim, Y.-H., Koo, C.M., Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94 (2015), 494–500.
-
(2015)
Carbon
, vol.94
, pp. 494-500
-
-
Kumar, P.1
Shahzad, F.2
Yu, S.3
Hong, S.M.4
Kim, Y.-H.5
Koo, C.M.6
-
55
-
-
84879106448
-
4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction
-
4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett. 13 (2013), 2947–2951.
-
(2013)
Nano Lett.
, vol.13
, pp. 2947-2951
-
-
Zhu, H.1
Zhang, S.2
Huang, Y.-X.3
Wu, L.4
Sun, S.5
-
56
-
-
84873804429
-
Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction
-
[56] Jeon, I.-Y., Choi, H.-J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Dai, L., Baek, J.-B., Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 135:4 (2013), 1386–1393.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.4
, pp. 1386-1393
-
-
Jeon, I.-Y.1
Choi, H.-J.2
Jung, S.-M.3
Seo, J.-M.4
Kim, M.-J.5
Dai, L.6
Baek, J.-B.7
|