-
1
-
-
13844262010
-
Link Mining: A New Data Mining Challenge
-
L. Getoor, “Link Mining: A New Data Mining Challenge,” ACM SIGKDD Explorations Newsletter, vol. 5, no. 1, pp. 84–89, 2003.
-
(2003)
ACM SIGKDD Explorations Newsletter
, vol.5
, Issue.1
, pp. 84-89
-
-
Getoor, L.1
-
2
-
-
0036498398
-
A Study of Approaches to Hypertext Categorization
-
Y. Yang, S. Slattery, and R. Ghani, “A Study of Approaches to Hypertext Categorization,” J. Intelligent Information System, vol. 18, nos. 2/3, pp. 219–241, 2002.
-
(2002)
J. Intelligent Information System
, vol.18
, Issue.2-3
, pp. 219-241
-
-
Yang, Y.1
Slattery, S.2
Ghani, R.3
-
3
-
-
1942482990
-
Probabilistic Models of Text and Link Structure for Hypertext Classification
-
L. Getoor, E. Segal, B. Taskar, and D. Koller, “Probabilistic Models of Text and Link Structure for Hypertext Classification,” Proc. 17th Int'l Joint Conf. Artificial Intelligence Workshop Text Learning: Beyond Supervision, pp. 24–29, 2001.
-
(2001)
Proc. 17th Int'l Joint Conf. Artificial Intelligence Workshop Text Learning: Beyond Supervision
, pp. 24-29
-
-
Getoor, L.1
Segal, E.2
Taskar, B.3
Koller, D.4
-
4
-
-
0032090684
-
Enhanced Hypertext Categorization Using Hyperlinks
-
L.M. Haas and A. Tiwary, eds.
-
S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced Hypertext Categorization Using Hyperlinks,” Proc. ACM SIGMOD '98, L.M. Haas and A. Tiwary, eds., pp. 307–318, 1998.
-
(1998)
Proc. ACM SIGMOD '98
, pp. 307-318
-
-
Chakrabarti, S.1
Dom, B.2
Indyk, P.3
-
5
-
-
77952399122
-
Learning Relational Probability Trees
-
J. Neville, D. Jensen, L. Friedland, and M. Hay, “Learning Relational Probability Trees,” Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 625–630, 2003.
-
(2003)
Proc. Ninth ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining
, pp. 625-630
-
-
Neville, J.1
Jensen, D.2
Friedland, L.3
Hay, M.4
-
7
-
-
0141496151
-
Learning Probabilistic Models of Relational Structure
-
N. Friedman, D. Koller, and B. Taskar, “Learning Probabilistic Models of Relational Structure,” J. Machine Learning Research, pp. 679–707, 2002.
-
(2002)
J. Machine Learning Research
, pp. 679-707
-
-
Friedman, N.1
Koller, D.2
Taskar, B.3
-
8
-
-
1942418618
-
Discriminative Probabilistic Models for Relational Classification
-
B. Taskar, P. Abbeel, and D. Koller, “Discriminative Probabilistic Models for Relational Classification,” Proc. Uncertainty on Artificial Intelligence, pp. 485–492, 2001.
-
(2001)
Proc. Uncertainty on Artificial Intelligence
, pp. 485-492
-
-
Taskar, B.1
Abbeel, P.2
Koller, D.3
-
11
-
-
1942450651
-
Linkage and Autocorrelation Cause Feature Selection Bias in Relational Learning
-
D. Jensen and J. Neville, “Linkage and Autocorrelation Cause Feature Selection Bias in Relational Learning,” Proc. Ninth Int'l Conf. Machine Learning, pp. 259–266, 2002.
-
(2002)
Proc. Ninth Int'l Conf. Machine Learning
, pp. 259-266
-
-
Jensen, D.1
Neville, J.2
-
12
-
-
32044466073
-
Markov Logic Networks
-
M. Richardson and P. Domingos, “Markov Logic Networks,” Machine Learning, vol. 62, nos. 1–2, pp. 107–136, 2005.
-
(2005)
Machine Learning
, vol.62
, pp. 1-2
-
-
Richardson, M.1
Domingos, P.2
-
13
-
-
0002123103
-
Dependency Networks for Inference, Collaborative Filtering, and Data Visualization
-
D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie, “Dependency Networks for Inference, Collaborative Filtering, and Data Visualization,” J. Machine Learning Research, vol. 1, pp. 49–75, 2001.
-
(2001)
J. Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
14
-
-
2442767774
-
Context in Problem Solving: A Survey
-
P. Brezillon, “Context in Problem Solving: A Survey,” The Knowledge Eng. Rev., vol. 14, no. 1, pp. 1–34, 1999.
-
(1999)
The Knowledge Eng. Rev
, vol.14
, Issue.1
, pp. 1-34
-
-
Brezillon, P.1
-
15
-
-
33747060155
-
A New Formulation of Coupled Hidden Markov Models
-
technical report, Dept. of Electrical and Computer Eng., Univ. of Texas at Austin
-
S. Zhong, J. Ghosh, “A New Formulation of Coupled Hidden Markov Models,” technical report, Dept. of Electrical and Computer Eng., Univ. of Texas at Austin, 2001.
-
(2001)
-
-
Zhong, S.1
Ghosh, J.2
-
16
-
-
0000806922
-
Automating the Construction of Internet Portals with Machine Learning
-
A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating the Construction of Internet Portals with Machine Learning,” Information Retrieval J., vol. 3, pp. 127–163, 2000.
-
(2000)
Information Retrieval J
, vol.3
, pp. 127-163
-
-
McCallum, A.1
Nigam, K.2
Rennie, J.3
Seymore, K.4
-
17
-
-
0031625423
-
Learning to Extract Symbolic Knowledge from the World Wide Web
-
M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitechell, K. Nigam, and S. Slattery, “Learning to Extract Symbolic Knowledge from the World Wide Web,” Proc. 15th Nat'l Conf. Artificial Intelligence, pp. 509–516, 1998.
-
(1998)
Proc. 15th Nat'l Conf. Artificial Intelligence
, pp. 509-516
-
-
Craven, M.1
DiPasquo, D.2
Freitag, D.3
McCallum, A.4
Mitechell, T.5
Nigam, K.6
Slattery, S.7
-
19
-
-
31844438956
-
Probabilistic Models for Relational Data
-
Technical Report, MSR-TR-2004-30, Microsoft Research
-
D. Heckerman, C. Meek, and D. Koller, “Probabilistic Models for Relational Data,” Technical Report, MSR-TR-2004-30, Microsoft Research, 2004.
-
(2004)
-
-
Heckerman, D.1
Meek, C.2
Koller, D.3
-
20
-
-
26944439068
-
Classifying Relational Data with Neural Networks
-
S. Kramer and B. Pfahringer, eds.
-
W. Uwents and H. Blockeel, “Classifying Relational Data with Neural Networks,” Proc. 15th Int'l Conf. Inductive Logic Programming, S. Kramer and B. Pfahringer, eds., pp. 384–396, 2005.
-
(2005)
Proc. 15th Int'l Conf. Inductive Logic Programming
, pp. 384-396
-
-
Uwents, W.1
Blockeel, H.2
-
21
-
-
18744397044
-
Statistical Relational Learning for Document Mining
-
A. Popescul, L.H. Ungar, S. Lawrence, and D. M. Pennock, “Statistical Relational Learning for Document Mining,” Proc. IEEE Int'l Conf. Data Mining, pp. 275–282, 2003.
-
(2003)
Proc. IEEE Int'l Conf. Data Mining
, pp. 275-282
-
-
Popescul, A.1
Ungar, L.H.2
Lawrence, S.3
Pennock, D.M.4
-
23
-
-
0000675721
-
Context-Specific Independence in Bayesian Networks
-
E. Horvitz and F. Jensen, eds.
-
C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, “Context-Specific Independence in Bayesian Networks,” Proc. 12th Conf. Uncertainty in Artificial Intelligence (UAI-96), E. Horvitz and F. Jensen, eds., pp. 115–123, 1996.
-
(1996)
Proc. 12th Conf. Uncertainty in Artificial Intelligence (UAI-96)
, pp. 115-123
-
-
Boutilier, C.1
Friedman, N.2
Goldszmidt, M.3
Koller, D.4
-
25
-
-
84892332317
-
Entropy and Information Theory
-
New York: Springer-Verlag
-
R. M. Gray, Entropy and Information Theory. New York: Springer-Verlag, 1990.
-
(1990)
-
-
Gray, R.M.1
-
26
-
-
84880816720
-
Dynamic Probabilistic Relational Models
-
S. Sanghai, P. Domingos, and D. Weld, “Dynamic Probabilistic Relational Models,” Proc. 18th Int'l Joint Conf. Artificial Intelligence, pp. 992–997, 2003.
-
(2003)
Proc. 18th Int'l Joint Conf. Artificial Intelligence
, pp. 992-997
-
-
Sanghai, S.1
Domingos, P.2
Weld, D.3
-
27
-
-
29344464364
-
Simple Estimators for Relational Bayesian Classifiers
-
J. Neville, D. Jensen, and B. Gallagher, “Simple Estimators for Relational Bayesian Classifiers,” Proc. Third IEEE Int'l Conf. Data Mining, pp. 609–612, 2003.
-
(2003)
Proc. Third IEEE Int'l Conf. Data Mining
, pp. 609-612
-
-
Neville, J.1
Jensen, D.2
Gallagher, B.3
-
30
-
-
12244297396
-
Why Collective Inference Improves Relational Classification
-
D. Jensen, J. Neville, and B. Gallagher, “Why Collective Inference Improves Relational Classification,” Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, pp. 593–598, 2004.
-
(2004)
Proc. 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining
, pp. 593-598
-
-
Jensen, D.1
Neville, J.2
Gallagher, B.3
|